Quiz 13 solutions

1. The difference between electromagnetic radiation and particle radiation is \qquad . Particle radiation includes \qquad .
Check two (2) boxes.
electromagnetic radiation is from atoms and particle radiation is from molecules (blank 1)
electromagnetic radiation is not dangerous and particle radiation is very dangerous (blank 1)
electromagnetic radiation is from radioactive isotopes and particle radiation is from nuclear reactions
(blank 1)
electromagnetic radiation is from electrons and particle radiation is from the nucleus (blank 1)
alpha particles, beta particles, gamma particles (blank 2)
alpha particles, beta particles, neutrons (blank 2)
alpha particles, beta particles, X-rays (blank 2)
gamma radiation, X-rays (blank 2)
2. Based on \qquad , alpha particles are \qquad dangerous than beta particles because \qquad .
Check three (3) boxes.
ΔG (blank 1)
REB (blank 1)
RBE (blank 1)
more (blank 2)
less (blank 2)
as (blank 2)
they move very fast (blank 3)
they are smaller than beta particles (blank 3)
they are much bigger than beta particles (blank 3)
they are blocked by concrete (blank 3)
3. Radioactive decay of radioactive isotopes is a first order reaction. The half-life of a radioisotope is 0.693/k.

Americium-241 is used in smoke detectors and is an alpha emitter and has a half-life of 458 years.
Carbon-14 is used to date old objects and is a beta emitter and has a half-life of 5700 years.
The nuclear decay product of $\mathrm{Am}-241$ is \qquad . You would be exposed to more radiation by the isotope with the \qquad k, which would be \qquad .
Check three (3) boxes.
Pa (blank 1)
U (blank 1)
Np (blank 1)
Pu (blank 1)
large (blank 2)
small (blank 2)
Am-241 (blank 3)
C-14 (blank 3)
Same (blank 3)
4. The half life of radioactive C -14 is 5700 years (which is used to determine the age of old objects). You have a 2.0 g sample of $\mathrm{C}-14$. How many grams of sample remains after 3 half lives?
Give a number with 2 significant figures only. Do not include text.
Answer: 0.25
5. U-235 undergoes induced fission.
${ }^{235}{ }_{92} \mathrm{U}+{ }^{1} \mathrm{n}$--> ${ }^{236}{ }_{92} \mathrm{U}$--> ${ }^{140}{ }_{54} \mathrm{Xe}+\ldots+\ldots{ }^{1} \mathrm{on}$
The second product has a mass number of 94 and is \qquad . The number of neutrons produced is \qquad . $1^{\text {st }}$ blank: Write the mass number, atomic symbol, and atomic number, e.g., 235U92 for U-235. Do not add spaces between numbers or letters. $2^{\text {nd }}$ blank: give a number only. Do not include text. Separate each answer with a comma.
Answer: ${ }^{94}{ }_{38} \mathrm{Sr}, 2$

Quiz 12 solutions

1. The positive terminal of a power supply \qquad electrons from the \qquad in an electrolytic cell. The \qquad electrons in this electrode are \qquad a substance and causes it to \qquad _. attract (blank 1)
Repels (blank 1)
Anode (blank 2)
Cathode (blank 2)
Deficiency of (blank 3)
Extra (blank 3)
Accepted from (blank 4)
Donated to (blank 4)
Oxidize (blank 5)
Reduce (blank 5)
2. You don't want to show off your gold ring so you decide to plate it with iron (cover your gold ring with iron). You can use the following materials: $\mathrm{Au}(\mathrm{s})$, graphite (s), Fe (s), gold ring, $\mathrm{Au}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}$. a. The gold ring should be the \qquad and is connected to the \qquad electrode of the battery (power supply).
Anode (blank 1)
Cathode (blank 1)
Either (blank 1)
in my mouth as a I sip tea (blank 1)
Positive (blank 2)
Negative (blank 2)
Either one (blank 2)
b. The electrolyte should contain \qquad . The reaction that you want to occur at the ring is \qquad .
Blank 2: Write the balanced chemical equation. Use ${ }^{\wedge}$ to show superscript for ions, e.g., $\overline{\mathrm{Na}^{\wedge}+}$ for sodium ion. Add a space between substances.
Au (s) (blank 1)
graphite (s) (blank 1)
Fe (s) (blank 1)
$\mathrm{Au}^{3+}(\mathrm{aq})$ (blank 1)
$\mathrm{Fe}^{2+}(\mathrm{aq})$ (blank 1)
Other
$\mathrm{Fe}^{\wedge 2+}+2 \mathrm{e}^{\wedge-}$--> Fe
3. You want to split water by electrolysis. You have NaOH solution, Pt cathode and graphite anode.

You know the following half reactions:

Reaction 1:	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}-\mathrm{-} \mathrm{H}_{2}$	$\mathrm{E}_{\text {reduction }}=0 \mathrm{~V}$
Reaction 2:	$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}-->\mathrm{H}_{2}+2 \mathrm{OH}^{-}$	Ereduction $=-0.83 \mathrm{~V}$
Reaction 3:	$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}-->2 \mathrm{H}_{2} \mathrm{O}$	Ereduction $=1.23 \mathrm{~V}$
Reaction 4:	$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}->4 \mathrm{OH}^{-}$	$\mathrm{E}_{\text {reduction }}=0.40 \mathrm{~V}$

a. The half reaction that occurs at the graphite anode is \qquad . The half reaction that occurs at the Pt cathode is \qquad .
Reaction 1 (blank 1)
Reverse of Reaction 1 (blank 1)
Reaction 2 (blank 1)
Reverse of Reaction 2 (blank 1)
Reaction 3 (blank 1)
Reverse of Reaction 3 (blank 1)
Reaction 4 (blank 1)
Reverse of Reaction 4 (blank 1)
Reaction 1 (blank 2)
Reverse of Reaction 1 (blank 2)
Reaction 2 (blank 2)

Reverse of Reaction 2 (blank 2)
Reaction 3 (blank 2)
Reverse of Reaction 3 (blank 2)
Reaction 4 (blank 2)
Reverse of Reaction 4 (blank 2)
H^{+}means acid conditions: $\mathrm{H}_{2} \mathrm{SO}_{4}$
OH^{-}means basic conditions: NaOH
b. Show how you would calculate the minimum applied voltage to split water, e.g., E $\mathrm{E}_{\text {cell }}=0 \mathrm{~V}-0.83 \mathrm{~V}=-$ 0.83 V . Show the numbers you need to add or subtract to calculate $\mathrm{E}_{\text {cell }}$.
$\mathrm{E}_{\text {cell }}=-0.83 \mathrm{~V}+(-0.40 \mathrm{~V})=-1.23 \mathrm{~V}$

Quiz 11 solutions

1. Here is a list of oxidizing agents. Acids can behave as oxidizing agents.

$\mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}-->2 \mathrm{I}^{-}(\mathrm{aq})$	$\mathrm{E}^{\circ}=0.53 \mathrm{~V}$
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}-->2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{E}^{\circ}=1.23 \mathrm{~V}$
$\mathrm{HClO}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}-->\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{E}^{\circ}=1.49 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}--->2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{E}^{\circ}=1.77 \mathrm{~V}$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}-->\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{E}^{\circ}=0 \mathrm{~V}$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}-->\mathrm{Au}$	$\mathrm{E}^{\circ}=1.50 \mathrm{~V}$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-}--->\mathrm{Ag}$	$\mathrm{E}^{\circ}=0.80 \mathrm{~V}$

\qquad is a better oxidizing agent than HClO but not as good as $\mathrm{H}_{2} \mathrm{O}_{2}$ because this substance has a \qquad potential than HClO but \qquad than $\mathrm{H}_{2} \mathrm{O}_{2}$.
$\mathrm{H}_{2} \mathrm{O}_{2}$ (blank 1)
HClO (blank 1)
O_{2} (blank 1)
I_{2} (blank 1)
H^{+}(blank 1)
Au^{3+} (blank 1)
Ag^{+}(blank 1)
Higher (blank 2)
Lower (blank 2)
Oxidation (blank 3)
Reduction (blank 3)
Higher (blank 4)
Lower (blank 4)
Substance with highest E° is the best oxidizing agent.
2. a. Silver metal is \qquad active than gold metal. This means silver is a \qquad agent than gold. It also means the reduction potential of silver ion is \qquad than the reduction potential of gold ion.
More (blank 1)
Same (blank 1)
Less (blank 1)
better (blank 2)
worse (blank 2)
oxidizing (blank 3)
reducing (blank 3)
higher (blank 4)
same (blank 4)
lower (blank 4)
b. You want to make a silver-gold battery.
$\begin{array}{ll}\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-}-->\mathrm{Ag}(\mathrm{s}) & \mathrm{E}^{\circ}=0.80 \mathrm{~V} \\ \mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}-->\mathrm{Au}(\mathrm{s}) & \mathrm{E}^{\circ}=1.50 \mathrm{~V}\end{array}$

Gold is the \qquad because it is \qquad active than silver. The \qquad is oxidized and is the \qquad .
Anode (blank 1)
cathode (blank 1)
Less (blank 2)
Not (blank 2)
More (blank 2)
Same (blank 2)
Ag (blank 3)
Au (blank 3)
Ag^{+}(blank 3)
Au^{3+} (blank 3)
Anode (blank 4)
cathode (blank 4)
c. The voltage produced by this battery is \qquad $V . \Delta G$ for this battery is \qquad 0 , which I know from the equation \qquad because the battery reaction is \qquad
Blank 1: Give a number with 2 decimal places only in "Other". Do not include text. Blank 3: Give an equation (not the name of an equation) in "Other". Separate each answer with a comma.
Greater than (blank 2)
less than (blank 2)
equal to (blank 2)
spontaneous (blank 4)
not spontaneous (blank 4)
Other
$0.70, \Delta \mathrm{G}=-\mathrm{nFE}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cathode }}-\mathrm{E}_{\text {anode }}=1.50-0.80=0.70 \mathrm{~V}$
d. Starting from $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Au}^{3+}\right]=1 \mathrm{M}$, your $\mathrm{Ag} / \mathrm{Au}$ battery has discharged 60%. You use the Nernst equation to determine the voltage of the battery: $A=B-(R T / n F) \ln (Q)$
For this 60\% discharged battery, $\mathrm{n}=$ \qquad , $\mathrm{Q}=$ \qquad , and $A=$ \qquad Blank 1: Give a number with 1 significant figure. Do not include text. Blank 2: Give a number with 3 significant figures. Do not include text. Blank 3: Give a number with 3 significant figures. Do not include text. Separate each answer with a comma.
3, 54.9, 2.23
Reduction half-reaction: $A u^{3+}(a q)+3 e^{-}$--> $A u(s)$
Oxidation half-reaction: $\mathrm{Ag}(\mathrm{s})-->\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-}$
Overall reaction: $3 \mathrm{Ag}(\mathrm{s})+\quad \mathrm{Au}^{3+}(\mathrm{aq})-->3 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Au}(\mathrm{s})$
Initial: 1
Reacts: $\quad 0.6 \quad 0.6$ moles $\mathrm{Au}^{3+}(\mathrm{aq})\left(3\right.$ moles $\left.\mathrm{Ag}^{2+} / 1 \mathrm{moles}^{\mathrm{Au}}{ }^{3+}\right)=1.8$
moles
Left over: $\quad 0.4 \quad 2.8$
$\mathrm{Q}=$ Ratio of $\left[\mathrm{Ag}^{+}\right]^{3} /\left[\mathrm{Au}^{3+}\right]=(2.8)^{3} / 0.4=54.88$
Ecell $=0.70-(8.31)(298) /(3)(96500) \ln (54.88)=0.67 \mathrm{~V}$

Quiz 10 solutions

Carbonated beverages are acidic because CO_{2} reacts with water to form H^{+}and HCO_{3}^{-}:
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})--->\mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
For this reaction, $\Delta \mathrm{H}=-12 \mathrm{~kJ} /$ mole and $\Delta \mathrm{S}=-189 \mathrm{~J} / \mathrm{mole} \mathrm{K}$.

1. At $25^{\circ} \mathrm{C}, \Delta \mathrm{G}=\ldots \quad \mathrm{kJ} / \mathrm{mole}$. This means this reaction is \qquad
Blank 1: Give a number with 3 significant figures only in "Other". Do not include units.
Spontaneous (blank 2)
Not spontaneous (blank 2)
Other
44 to 47
$44.7 \mathrm{~kJ} / \mathrm{mole}$ using Hess' law, $46.7 \mathrm{~kJ} /$ mole using $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
2. This reaction is \qquad by enthalpy and \qquad by entropy and occurs at \qquad temperature(s). Favored (blank 1)
Not favored (blank 1) Favored (blank 2)
Not favored (blank 2) all (blank 3)
some (blank 3)
no (blank 3)
$\Delta \mathrm{H}=-12 \mathrm{~kJ} / \mathrm{mole} \rightarrow \Delta \mathrm{H}<0$ so reaction is favored by enthalpy.
$\Delta S=-189 \mathrm{~J} /$ mole $\mathrm{K} \rightarrow \Delta \mathrm{S}<0$ so reaction is not favored by entropy.
3. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {eq }}=$ \qquad . The equation I would use to calculate $\mathrm{K}_{\text {eq }}$ is \qquad .

Blank 1: Give a number in scientific notation with 3 signficant figures as _.__E_ in "Other". Do not include text.
$q=m s \Delta T$ (blank 2)
$\Delta \mathrm{H}=\mathrm{q}$ (blank 2)
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ (blank 2)
$\Delta G=-R T \operatorname{In}$ Keq (blank 2)
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$ (blank 2)
Other
$1.45 \mathrm{E}-8$ to $1.8 \mathrm{E}-8$
$\Delta \mathrm{G}=-\mathrm{RT} \ln$ Keq or Keq $=\mathrm{e}^{-(\Delta \mathrm{G} / \mathrm{RT})}=\mathrm{e}^{-(44600 /((8.31)(298))}=1.5 \mathrm{E}-8$.
4. $\Delta \mathrm{H}$ for this reaction is \qquad . Lowering the temperature shifts the reaction to the \qquad side so \qquad CO_{2} (g) escapes from the soda.

Hot (blank 1)
Exergonic (blank 1)
Endothermic (blank 1)
Exothermic (blank 1)
Reactant (blank 2)
Product (blank 2)
South (blank 2)
More (blank 3)
Less (blank 3)
Polar (blank 3)
5. The temperature at which this reaction occurs/does not occur is \qquad K. I would not be able to get this reaction to occur or not occur at this temperature because \qquad -.
$1^{\text {st }}$ blank: answer "any temperature" or "no temperature" or give the minimum temperature in K at which this reaction occurs or does not occur with 2 significant figures only; do not include units. $2^{\text {nd }}$ blank: fill in the blank. Separate each answer with a comma.
63 , water is not a liquid at 63 K .
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Set $\Delta \mathrm{G}=0$ and solve for $\mathrm{T}=(\Delta \mathrm{G}-\Delta \mathrm{H}) /(-\Delta \mathrm{S})=(0-(-12000)) /(-189)=63.48 \mathrm{~K}=63 \mathrm{~K}$

Quiz 9 solutions

1. 100 g of water $\left(\mathrm{s}=4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)$ at $5.0^{\circ} \mathrm{C}$ is added to 100 g of liquid ethanol $\left(\mathrm{s}=2.5 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)$ at $25^{\circ} \mathrm{C}$. The ___ gains heat. $\Delta \mathrm{T}$ for the water is \qquad ΔT for the ethanol because of the difference in \qquad . The final temperature is \qquad degrees C.
Blank 4: Give a number with 3 significant figures in "Other".
water (blank 1)
ethanol (blank 1)
is greater than (blank 2)
equals (blank 2)
is less than (blank 2)
mass (blank 3)
specific heat (blank 3)
temperature (blank 3)
Other
12.5
$q=m s \Delta T$
heat gained by water $=$ - heat lost by ethanol
$m_{w} \mathrm{~S}_{\mathrm{w}} \Delta \mathrm{T}_{\mathrm{w}}=-\mathrm{m}_{\mathrm{e}} \mathrm{S}_{\mathrm{e}} \Delta \mathrm{T}_{\mathrm{e}}$
$(100 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{\mathrm{f}}-5.0^{\circ} \mathrm{C}\right)=-(100 \mathrm{~g})\left(2.5 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{\mathrm{f}}-25^{\circ} \mathrm{C}\right)$
Solve for $\mathrm{T}_{\mathrm{f}}=12.5^{\circ} \mathrm{C}$.
$\Delta \mathrm{T}$ for water $=12.5^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}=7.5^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$ for ethanol $=12.5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=12.5^{\circ} \mathrm{C}$
heat gained by water $=(100 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(12.5^{\circ} \mathrm{C}-5.0^{\circ} \mathrm{C}\right)=3130 \mathrm{~J}$

- heat lost by ethanol $=-(100 \mathrm{~g})\left(2.5 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(12.5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=3130 \mathrm{~J}$

2. Coal, C , is burned in power plants to make electricity:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})-->\mathrm{CO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}_{\mathrm{f}}$ of coal $=0 \mathrm{~kJ} / \mathrm{mole}$.
a. For every 1 mole of coal that reacts, \qquad moles of CO_{2} are produced. $\Delta \mathrm{H}$ of this reaction $=$ \qquad $\mathrm{kJ} /$ mole. Blank 1: give a number with 2 significant figures only. Do not include text. Blank 2: give a number with 3 significant figures only. Do not include text. Separate each answer with a comma.
1, -393
Apply Hess' law: $\left[\Delta \mathrm{H}_{\mathrm{f}}\right.$ of $\left.\mathrm{CO}_{2}(\mathrm{~g})\right]-\left[\Delta \mathrm{H}_{\mathrm{f}}\right.$ of coal $+\Delta \mathrm{H}_{\mathrm{f}}$ of $\left.\mathrm{O}_{2}(\mathrm{~g})\right]=-393 \mathrm{~kJ} / \mathrm{mole}-[0+0]=-393 \mathrm{~kJ} / \mathrm{mole}$
b. This reaction is \qquad because the energy required to break bonds in the reactants is \qquad the energy released when bonds form to make products.
Exothermic (blank 1)
Endothermic (blank 1)
is greater than (blank 2)
equals (blank 2)
is less than (blank 2)
c. The coal combustion reaction \qquad work because there are \qquad moles of gas reactants compared to \qquad moles of gas products. This causes a \qquad of gas.
Blanks 2 and 3: Give a number with 1 significant figure in "Other". Do not include text. Separate each answer with a comma.
Produces (blank 1)
Absorbs (blank 1)
Does not involve (blank 1)
Expansion (blank 4)
Compression (blank 4)
Neither expansion nor compression (blank 4)
Other
1, 1
3. A refrigerator keeps your food cold.

Step A: low pressure gas \rightarrow high pressure gas
Step B: high pressure gas \rightarrow high pressure liquid
Step C: high pressure liquid \rightarrow low pressure liquid
Step D: low pressure liquid \rightarrow low pressure gas
Step A \qquad work. Step \qquad cools the air inside your refrigerator because the refrigerant \qquad heat when it
\qquad
\square requires (blank 1)
produces (blank 1)
A (blank 2)

B (blank 2)
C (blank 2)
D (blank 2)
Gains (blank 3)
Loses (blank 3)
Neither gains nor loses (blank 3)
compresses (blank 4)
Condenses (blank 4)
Expands (blank 4)
vaporizes (blank 4)
Step A: low pressure gas \rightarrow high pressure gas compresses a gas and requires work.
Step D: liquid \rightarrow gas phase change is endothermic

