Exam 2 solutions

1. Hard water is due to Ca^{2+} and Mg^{2+} ions in water. These ions come from water running over or sitting in a reservoir over limestone (CaCO₃, K_{sp} = 3.8x10⁻⁹ = 3.8E-9) and dolomite (MgCO₃, K_{sp} = 4.0x10⁻⁵ = 4.0E-5) minerals.

a. 1 mole of CaCO₃ and 1 mole of MgCO₃ are dumped into 1 liter of water. The concentration of Ca²⁺ = 6.2E-5 M.

The concentration of Ca^{2+} will be ____ than the concentration of Mg^{2+} . To support my answer, I use the equation _____ and calculate the concentration of $Mg^{2+} = ___M M$. greater than (blank 1)

equal to (blank 1)

less than (blank 1)

Blank 2: Write the equation that involves the numerical value of K and x, where x = concentration of reactant/product in "Other". E.g., 1.0E-1 = (x)/(x-1).

4.0E-5 = (x)(x)

Blank 3: Write a number in scientific notation as _._E_ in "Other". E.g., 1.1E11. Use 2 significant figures. Do not include text.

6.3E-3 4.0E-5 = (x) (x)

Solve for $x = 6.3E-3 = [Mg^{2+}]$

b. To remove unsightly hard water stains from by cups and glasses, this reaction

Ca(OH)₂ (s) \frown Ca²⁺ (aq) + 2 OH⁻ (aq) tells me I would use a _____ because this substance reacts with _____ and shifts the reaction to the _____ side. acid (blank 1) base (blank 1) soap (blank 1) Ca(OH)₂ (s) (blank 2) Ca²⁺ (aq) (blank 2) OH⁻ (aq) (blank 2) reactant (blank 3) product (blank 3)

either (blank 3)

2. When a fuel, such as ethanol (C₂H₅OH), is burned, energy, water, and carbon dioxide are produced: C₂H₅OH + O₂ --> H₂O + CO₂ (not balanced).

Carbon dioxide is a greenhouse gas. CO_2 (g) in the earth's atmosphere is absorbed by the the oceans in an equilibrium reaction:

 $CO_2(g) \Longrightarrow CO_2(aq)$

 $K = 3.36 \times 10^{-2} = 3.36 \text{E}-2$ at $T = 25^{\circ} \text{C}$.

 CO_2 also reacts with water to produce H⁺ and HCO₃⁻:

CO₂ (aq) + H₂O (I) ← H⁺ + HCO₃⁻

 $K = 4.3 \times 10^{-7} = 4.3 \text{E-7}$ at $T = 25^{\circ} \text{C}$.

a. The K for the ethanol burning reaction is _____1 because ethanol burns and ____. In the picture, there is _____CO₂ in gas phase than the liquid phase because ____.

Blank 4: give reasons in "Other".

greater than (blank 1) equal to (blank 1)

```
less than (blank 1)
makes a lot of products (blank 2)
makes few products (blank 2)
more (blank 3)
same (blank 3)
less (blank 3)
Other
K is less than 1
b. I support my answer to part a because when 1 mole of CO<sub>2</sub> (g) is bubbled into 1 liter of water at 25°C, I
use the equation _____ and calculate [CO_2 (aq)] = M.
Blank 1: Write the equation that involves the numerical value of K and x, where x = concentration of
reactant/product. E.g., 1.0E-1 = (x)/(x-1).
3.36E-2 = x/(1-x)
or
3.36E-2 = x/(1)
Blank 2: Write a number in scientific notation as _._E_ in "Other". E.g., 1.1E11. Use 2 significant
figures. Do not include text.
0.033
0.0325 to 0.0336
Calculate [CO<sub>2</sub> (aq)] = ____ M.
K = 3.36 \times 10^{-2} = x/(1-x)
Solve for x = 0.0325.
Assume 1-x = 1 (since K = 3.36 \times 10^{-2} is very small compared to initial concentration of 1 M, solve for x =
0.0336.
```

c. Earlier in Chem 1B, we learned that gases are soluble in hot water than cold water. This means the CO_2 (g) \leftarrow CO_2 (aq) reaction is because heat is a and as temperature increases, the reaction shifts to the side. This also tells us as the earth's temperature rises, CO₂ gas dissolves in the ocean. more (blank 1) same (blank 1) less (blank 1) exothermic (blank 2) endothermic (blank 2) reactant (blank 3) product (blank 3) reactant (blank 4) product (blank 4) more (blank 5) same (blank 5) less (blank 5)

3. CO₂ is also involved in our blood buffer:

 CO_2 (aq) + H₂O (I) \longrightarrow H⁺ (aq) + HCO₃⁻ (aq) K = 7.9x10⁻⁷ = 7.9E-7 at 37°C a. CO_2 (aq) behaves like an acid in this reaction. In a titration curve of this acid, the pH at the half-way point is ___. This means at blood pH of 7.4, [CO_2 (aq)] is ___ [HCO₃⁻ (aq)] and the ratio of [HCO₃⁻ (aq)] / [CO_2 (aq)] is ___. Blank 1: give a number with 2 significant figures in "Other". Do not include text. Blank 3: give a number with 2 significant figures in "Other". Do not include text. Separate each answer with a comma. Greater than (blank 2) Equal to (blank 2) less than (blank 2) Other 6.1, 20 pKa = -log Ka = -log (7.9E-7) = 6.1Use H-H equation: 7.4 = 6.1 + log [HCO₃⁻ (aq)] / [CO₂ (aq)] Solve for [HCO₃⁻ (aq)] / [CO₂ (aq)] = 20.

b. When a person starts to hyperventilate, the person breathes rapidly and rapidly exhales CO₂. This causes pH to ______ because ______ is _____ and shifts the reaction to the _______ side.
increase (blank 1)
decrease (blank 1)
does not change (blank 1)
reactant (blank 2)
product (blank 2)
neither (blank 3)
removed (blank 3)
reactant (blank 4)
product (blank 4)

4. Hemoglobin is the oxygen carrier in blood that transports oxygen from our lungs to tissues. Hemoglobin is a protein and exists as deoxygenated hemoglobin (H Hgb, pKa = 7.7) and its conjugate base (Hgb) and oxygenated hemoglobin (H Hgb O_2 , pK_a = 6.2) and its conjugate base (Hgb O_2). H Hgb = H⁺ + Hgb $pK_a = 7.7$ Reaction 1: H Hgb $O_2 = H^+ + Hgb O_2$ $pK_a = 6.2$ Reaction 2: These two reactions show how well O₂ binds to the acid and base forms of hemoglobin: H Hgb O₂ = H Hgb + O₂ K₀₂ = 1 Reaction 3: Hgb $O_2 \implies$ Hgb + O_2 K'₀₂ = 0.032 Reaction 4:

a. The form of hemoglobin that is the strongest acid is ____. The form of hemoglobin that binds to oxygen better is because .

Blank 3: give reasons in "Other". H Hgb (blank 1) Hgb (blank 1) H Hgb O₂ (blank 1) H Hgb O₂ (blank 1) H Hgb (blank 2) Hgb (blank 2) Other Lower K'_{O2} means more reactant (Hgb O₂). b. The pH of blood is 7.4. When hemoglobin is oxygenated to form H Hgb O_2 , there is _____ Hbg O_2 than H Hgb O_2 because the pH of blood is _____ the half-way point (Point A) in the titration curve of this acid with a base. In the tissues where the O_2 concentration is low, Reaction 4 shifts to the _____ side and Hbg O_2 releases O_2 .

volume of base

more (blank 1) less (blank 1) same (blank 1) before (blank 2) at (blank 2) after (blank 2) reactant (blank 3) product (blank 3)

c. When hemoglobin is oxygenated, this reaction shifts to the products: H Hgb $O_2 \longrightarrow H^+ + Hgb O_2$. The blood pH ____ because [H⁺] ____ and affects a second reaction: H⁺ + HCO₃⁻ $\implies H_2O + CO_2$ (g) and makes this reaction shift to the product side. Our body ____ the excess CO₂ (g) because our body is an ____ system.

Blank 3: give a 1 or 2 word answer in "Other". Blank 4: give a 1 word answer in "Other". Separate each answer with a comma.

increases (blank 1) decreases (blank 1) stays the same (blank 1) increases (blank 2) decreases (blank 2) stays the same (blank 2) Other Exhale, open We exhale excess CO₂ out of our lungs into the atmosphere. The CO₂/HCO₃- blood buffer system is an open system that helps keep the pH of our blood between 7 and 7.5.

Quiz 8 solutions

1. This titration curve could represent 20 ml of 0.1 M _____ with 0.1 M NaOH. The pH at Point C is calculated with _____.

CH3COOH (blank 1) H2CO3 (blank 1) H3PO4 (blank 1) pH = pKa1 (blank 2) pH = pKa2 (blank 2) pH = 0.5(pKa1 + pKa2) (blank 2) pH = 0.5(pKa2 + pKa3) (blank 2) Ka1 and doing an equilibrium calculation (blank 2) Kb and doing an equilibrium calculation (blank 2)

2. Soda has a pH between 3 and 4. Soda makers often add phosphoric acid to give a tart taste to soda. 20 ml of 0.1 M phosphoric acid (H₃PO₄, pK_{a1} = 2.1, pK_{a2} = 7.2, pK_{a3} = 12.3) is titrated with 0.1 M NaOH.

a. In the phosphoric acid titration curve, pH 4.65 is the pH at the _____. pH 7.2 is the pH at the _____. starting point (blank 1)

1st ¹/₂ way point (blank 1) 1st endpoint (blank 1) 2nd ½ way point (blank 1) 2nd endpoint (blank 1) 3rd ½ way point (blank 1) 3rd endpoint (blank 1) 4th ¹/₂ way point (blank 1) 4th endpoint (blank 1) starting point (blank 2) 1st ¹/₂ way point (blank 2) 1st endpoint (blank 2) 2nd ½ way point (blank 2) 2nd endpoint (blank 2) 3rd ½ way point (blank 2) 3rd endpoint (blank 2) 4th ¹/₂ way point (blank 2) 4th endpoint (blank 2) b. To calculate the pH at the 3rd endpoint in the phosphoric acid titration curve, I would need to know K_b and set up an equilibrium calculation using the _____ reaction. The numerical value of K_b is _____. 1st blank: give a one or two word answer. 2nd blank: Write a number in scientific notation as ___E__. E.g., 1.1E11. Use 2 significant figures. Separate each answer with a comma. Base hydrolysis, K_b = K_w/K_{a3} = 1E-14/10^{-12.3} = 2.0E-02 c. I could use phosphate (PO4-3) and _____ to make a pH ____ buffer. H₃PO₄ (blank 1) $H_2PO_4^-$ (blank 1) HPO₄⁻² (blank 1) PO₄-3 (blank 1) 2 (blank 2)

5 (blank 2) 7 (blank 2) 12 (blank 2) d. To make soda with a pH of 3.5, I would use as the acid and as the base. The ratio of [base] to [acid] is Blank 3: give a number with 3 significant figures only in "Other". Do not include text. H₃PO₄ (blank 1) H₂PO₄⁻ (blank 1) HPO₄⁻² (blank 1) PO₄-3 (blank 1) H₃PO₄ (blank 2) H₂PO₄⁻ (blank 2) HPO₄⁻² (blank 2) PO₄-3 (blank 2) Other 25.1 Use Henderson-Hasselbach equation: pH = pKa + log ([base]/[acid]). $3.5 = 2.1 + \log ([H_2PO_4]/[H_3PO_4])$ $\log ([H_2PO_4]/[H_3PO_4]) = 1.4$ $([H_2PO_4]/[H_3PO_4]) = 10^{1.4} = 25.1$

Quiz 7 solutions 1. Consider the acid dissociation reaction: $HA \leq => H^+ + A^-$. For a weak acid at equilibrium, there is _____ HA than $H^+ + A^-$. This means K_a for this reaction is _____ and pKa should be _____. more (blank 1) same (blank 1) less (blank 1) Equal to 1 (blank 2) Greater than 1 (blank 2) Less than 1 (blank 2) Larger than 1 (blank 3) small or negative (blank 3)

2. NH₃ (ammonia) is a weak base. Graph ___ represents the hydrolysis of ammonia because there are ____ reactants than products as represented by the chemical equation ____.

3. 0.05 M acetic acid has a __ [H+] than 0.2 M acetic acid because higher concentration means ____ pH.

higher (blank 1) same (blank 1) lower (blank 1) higher (blank 2) same (blank 2) lower (blank 2) 4. You have a 0.1 M solution of an acid, HA. This acid has a Ka = 1.2E-5. a. The chemical equation for this reaction is ___. $HA + H_2O \iff A^- + H_3O^+$ (blank 1) $A^{-} + H_3O^{+} <==> H_2A + H_2O$ (blank 1) $A^{-} + H_2O \iff HA + OH^{--}$ (blank 1) b. The $[H^+] = _M$ at equilibrium. Give a number with 2 significant figures in scientific notation as x.xE-x, e.g., 1.1E-4. 1.1E-3 c. The pH of this acid is Give a number with 2 significant figures. 3.0 $HA \iff H^+ + A^-$ 0.1 0 0 X x х 0.1-x x Х 1.2E-5 = (x)(x)/(0.1-x) = (x)(x)/(0.1)solve for $x = [H^+] = 1.1E-3$ pH = -log (1.1E-3) = 3.05. You have a 0.1 M solution of a base, A^- . This base has a Kb = 4.3E-11. a. The equation I would use to calculate [OH⁻] is ___. C = concentration of A⁻. Kb = (C)/(x)(x)Kb = x/C-xKb = (C-x)(C-x)/(x)Kb = (x)(x)/(C)b. The $[OH^-] = M$ at equilibrium. Give a number with 2 significant figures in scientific notation as x.xE-x, e.g., 1.1E-4. 2.1E-6 c. The pH of this base is Give a number with 2 significant figures in "Other". Separate each answer with a comma. 8.3 $A^{-} + H_2O <==> HA + OH^{-}$ 0.1 0 0 Х Х Х 0.1-x Х х 4.3E-11 = (x)(x)/(0.1-x) = (x)(x)/(0.1)solve for $x = [OH^{-}] = 2.1E-6$ $pOH = -\log(2.1E-6) = 5.7$ pH = 14 - pOH = 14 - 5.7 = 8.3Quiz 6 solutions

1. A beverage is carbonated by dissolving CO_2 (g) into the drink: CO_2 (g) \longrightarrow CO_2 (aq) $K_{eq} = 0.036$ at 25°C

a. Graph __ represents this reaction because there are ___ reactants and ___ products.

More (blank 3) Same (blank 3) Less (blank 3)

b. 1 mole of CO_2 (g) is bubbled into 1 liter of water: CO_2 (g) $\iff CO_2$ (aq).

The equilibrium constant equation for this reaction is Keq = ____. The equilibrium concentration of CO_2 (aq) = ____ M.

An equilibrium constant equation for $A + B \le C$ is Keq = [C]/[A][B]. Blank 1: give the right side of the equation only in "Other". Blank 2: give a number with 2 significant figures only in "Other". Do not include text. Separate each answer with a comma.

[CO2 (aq)]/[CO2 (g)], 0.035

 $\begin{array}{c} CO_2(g) & \longleftarrow CO_2(aq). & K_{eq} = [CO_2(aq)]/[CO_2(g)] \\ \mbox{Initial} & 1 & 0 \\ \mbox{Reacts} & x & x \\ \mbox{Equilibrium} & 1-x & x \\ \mbox{K}_{eq} = [CO_2(aq)]/[CO_2(g)] = x/(1-x) = 0.036 \\ \mbox{Solve for } x: x = 0.036 (1-x) = 0.036 - 0.036x \\ \mbox{1.036 } x = 0.036 \\ \mbox{x} = 0.036/1.036 = 0.035 = [CO_2(aq)] \mbox{at equilibrium} \end{array}$

c. Bubbling more CO_2 (g) into 1 liter of water ____ the [CO_2 (aq)]/[CO_2 (g)] ratio. To get the system back to ____, the reaction shifts to make more ____.

```
Blank 2: give a one word answer in "Other".
increases (blank 1)
decreases (blank 1)
does not change (blank 1)
CO<sub>2</sub> (g) (blank 3)
CO<sub>2</sub> (aq) (blank 3)
Other
Equilibrium
```

2 points d. You can keep the soda from going flat by keeping the soda cold.

This means Keq at a temperature lower than 25° C is ____ Keq at 25° C. This means Δ H for this reaction is _____ because heat is a _____ and lowering the temperature is like _____ heat and shifts the reaction toward the _____ side. Greater than (blank 1) Equal to (blank 1) Less than (blank 1) exothermic (blank 2) endothermic (blank 2) reactant (blank 3) product (blank 3) adding (blank 4) removing (blank 4) reactant (blank 5) product (blank 5) neither (blank 5)