Exam 2 solutions

1. Hard water is due to Ca^{2+} and Mg^{2+} ions in water. These ions come from water running over or sitting in a reservoir over limestone $\left(\mathrm{CaCO}_{3}, \mathrm{~K}_{\text {sp }}=3.8 \times 10^{-9}=3.8 \mathrm{E}-9\right)$ and dolomite $\left(\mathrm{MgCO}_{3}, \mathrm{~K}_{\text {sp }}=4.0 \times 10^{-5}=4.0 \mathrm{E}-\right.$ 5) minerals.
a. 1 mole of CaCO_{3} and 1 mole of MgCO_{3} are dumped into 1 liter of water. The concentration of $\mathrm{Ca}^{2+}=$ 6.2E-5 M.

The concentration of Ca^{2+} will be ___ than the concentration of Mg^{2+}. To support my answer, I use the equation \qquad and calculate the concentration of $\mathrm{Mg}^{2+}=$ \qquad M. greater than (blank 1)
equal to (blank 1)
less than (blank 1)
Blank 2: Write the equation that involves the numerical value of K and x, where $x=$ concentration of reactant/product in "Other". E.g., 1.0E-1 $=(x) /(x-1)$.
$4.0 \mathrm{E}-5=(\mathrm{x})(\mathrm{x})$
Blank 3: Write a number in scientific notation as _._E__ in "Other". E.g., 1.1E11. Use 2 significant figures. Do not include text.
6.3E-3
$4.0 \mathrm{E}-5=(\mathrm{x})(\mathrm{x})$
Solve for $x=6.3 E-3=\left[\mathrm{Mg}^{2+}\right]$
b. To remove unsightly hard water stains from by cups and glasses, this reaction

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

tells me I would use a \qquad because this substance reacts with \qquad and shifts the reaction to the \qquad side. acid (blank 1)
base (blank 1)
soap (blank 1)
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ (blank 2)
$\mathrm{Ca}^{2+}(\mathrm{aq})$ (blank 2)
$\mathrm{OH}^{-}(\mathrm{aq})$ (blank 2)
reactant (blank 3)
product (blank 3)
either (blank 3)
2. When a fuel, such as ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, is burned, energy, water, and carbon dioxide are produced:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2}-->\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \text { (not balanced). }
$$

Carbon dioxide is a greenhouse gas. $\mathrm{CO}_{2}(\mathrm{~g})$ in the earth's atmosphere is absorbed by the the oceans in an equilibrium reaction:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq}) \quad \mathrm{K}=3.36 \times 10^{-2}=3.36 \mathrm{E}-2 \text { at } \mathrm{T}=25^{\circ} \mathrm{C} .
$$

CO_{2} also reacts with water to produce H^{+}and HCO_{3} :

$$
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{K}=4.3 \times 10^{-7}=4.3 \mathrm{E}-7 \text { at } \mathrm{T}=25^{\circ} \mathrm{C}
$$

a. The K for the ethanol burning reaction is \qquad 1 because ethanol burns and \qquad In the picture, there is CO_{2} in gas phase than the liquid phase because \qquad -. Blank 4: give reasons in "Other".

greater than (blank 1)
equal to (blank 1)
less than (blank 1)
makes a lot of products (blank 2)
makes few products (blank 2)
more (blank 3)
same (blank 3)
less (blank 3)
Other
K is less than 1
b. I support my answer to part a because when 1 mole of $\mathrm{CO}_{2}(\mathrm{~g})$ is bubbled into 1 liter of water at $25^{\circ} \mathrm{C}$, I use the equation \qquad and calculate $\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=$ \qquad M.

Blank 1: Write the equation that involves the numerical value of K and x , where $\mathrm{x}=$ concentration of reactant/product. E.g., 1.0E-1 = $(x) /(x-1)$.
3.36E-2 $=x /(1-x)$
or
3.36E-2 $=x /(1)$

Blank 2: Write a number in scientific notation as _._E__ in "Other". E.g., 1.1E11. Use 2 significant figures. Do not include text.
0.033
0.0325 to 0.0336

Calculate $\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=$ \qquad M.
$K=3.36 \times 10^{-2}=x /(1-x)$
Solve for $x=0.0325$.
Assume $1-x=1$ (since $K=3.36 \times 10^{-2}$ is very small compared to initial concentration of 1 M , solve for $\mathrm{x}=$ 0.0336 .
c. Earlier in Chem 1B, we learned that gases are \qquad soluble in hot water than cold water. This means the $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})$ reaction is \qquad because heat is a \qquad and as temperature increases, the reaction shifts to the __ side. This also tells us as the earth's temperature rises, \qquad CO_{2} gas dissolves in the ocean.
more (blank 1)
same (blank 1)
less (blank 1)
exothermic (blank 2)
endothermic (blank 2)
reactant (blank 3)
product (blank 3)
reactant (blank 4)
product (blank 4)
more (blank 5)
same (blank 5)
less (blank 5)
3. CO_{2} is also involved in our blood buffer:

$$
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \quad \mathrm{K}=7.9 \times 10^{-7}=7.9 \mathrm{E}-7 \text { at } 37^{\circ} \mathrm{C}
$$

a. $\mathrm{CO}_{2}(\mathrm{aq})$ behaves like an acid in this reaction. In a titration curve of this acid, the pH at the half-way point is \qquad . This means at blood pH of $7.4,\left[\mathrm{CO}_{2}(\mathrm{aq})\right]$ is \qquad $\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]$ and the ratio of $\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right] /$ $\left[\mathrm{CO}_{2}(\mathrm{aq})\right]$ is \qquad _.
Blank 1: give a number with 2 significant figures in "Other". Do not include text. Blank 3: give a number with 2 significant figures in "Other". Do not include text. Separate each answer with a comma.
Greater than (blank 2)
Equal to (blank 2)
less than (blank 2)
Other
6.1, 20
$\mathrm{pKa}=-\log \mathrm{Ka}=-\log (7.9 \mathrm{E}-7)=6.1$
Use H-H equation: $7.4=6.1+\log \left[\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{aq})\right]$
Solve for $\left[\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=20$.
b. When a person starts to hyperventilate, the person breathes rapidly and rapidly exhales CO_{2}. This causes pH to \qquad because \qquad is \qquad and shifts the reaction to the \qquad side.
increase (blank 1)
decrease (blank 1)
does not change (blank 1)
reactant (blank 2)
product (blank 2)
neither (blank 2)
added (blank 3)
removed (blank 3)
neither (blank 3)
reactant (blank 4)
product (blank 4)
neither (blank 4)
4. Hemoglobin is the oxygen carrier in blood that transports oxygen from our lungs to tissues. Hemoglobin is a protein and exists as deoxygenated hemoglobin ($\mathrm{H} \mathrm{Hgb}, \mathrm{pK}_{\mathrm{a}}=7.7$) and its conjugate base (Hgb) and oxygenated hemoglobin $\left(\mathrm{H} \mathrm{Hgb} \mathrm{O}_{2}, \mathrm{pK}_{\mathrm{a}}=6.2\right)$ and its conjugate base $\left(\mathrm{Hgb} \mathrm{O}_{2}\right)$.
Reaction 1: $\mathrm{H} \mathrm{Hgb} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Hgb} \quad \mathrm{pK}_{\mathrm{a}}=7.7$
Reaction 2: $\quad \mathrm{H} \mathrm{Hgb} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Hgb} \mathrm{O}_{2} \quad \mathrm{pK}_{\mathrm{a}}=6.2$
These two reactions show how well O_{2} binds to the acid and base forms of hemoglobin:
Reaction 3: $\mathrm{H} \mathrm{Hgb} \mathrm{O}_{2} \rightleftharpoons \mathrm{H} \mathrm{Hgb}+\mathrm{O}_{2} \quad \mathrm{~K}_{\mathrm{o} 2}=1$
Reaction 4: $\mathrm{Hgb} \mathrm{O}_{2} \rightleftharpoons \mathrm{Hgb}+\mathrm{O}_{2}$
$\mathrm{K}^{\prime} \mathrm{O} 2=0.032$

a. The form of hemoglobin that is the strongest acid is \qquad . The form of hemoglobin that binds to oxygen better is \qquad because \qquad Blank 3: give reasons in "Other".
H Hgb (blank 1)
Hgb (blank 1)
H Hgb O 2 (blank 1)
$\mathrm{Hgb} \mathrm{O}_{2}$ (blank 1)
H Hgb (blank 2)
Hgb (blank 2)
Other
Lower K'o2 means more reactant (Hgb O2).
b. The pH of blood is 7.4. When hemoglobin is oxygenated to form $\mathrm{H} \mathrm{Hgb} \mathrm{O}_{2}$, there is \qquad $\mathrm{Hbg} \mathrm{O}_{2}$ than H Hgb O 2 because the pH of blood is \qquad the half-way point (Point A) in the titration curve of this acid with a base. In the tissues where the O_{2} concentration is low, Reaction 4 shifts to the \qquad side and $\mathrm{Hbg} \mathrm{O} \mathrm{O}_{2}$ releases O_{2}.

more (blank 1)
less (blank 1)
same (blank 1)
before (blank 2)
at (blank 2)
after (blank 2)
reactant (blank 3)
product (blank 3)
c. When hemoglobin is oxygenated, this reaction shifts to the products: $\mathrm{H} \mathrm{Hgb} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Hgb} \mathrm{O}_{2}$.

The blood pH \qquad because $\left[\mathrm{H}^{+}\right]$ \qquad and affects a second reaction: $\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})$ and makes this reaction shift to the product side. Our body \qquad the excess $\mathrm{CO}_{2}(\mathrm{~g})$ because our body is an system.
Blank 3: give a 1 or 2 word answer in "Other". Blank 4: give a 1 word answer in "Other". Separate each answer with a comma.
increases (blank 1)
decreases (blank 1)
stays the same (blank 1)
increases (blank 2)
decreases (blank 2)
stays the same (blank 2)
Other
Exhale, open
We exhale excess CO_{2} out of our lungs into the atmosphere. The $\mathrm{CO}_{2} / \mathrm{HCO}_{3}{ }^{-}$blood buffer system is an open system that helps keep the pH of our blood between 7 and 7.5.

Quiz 8 solutions

1. This titration curve could represent 20 ml of 0.1 M \qquad with 0.1 M NaOH . The pH at Point C is calculated with \qquad _.

CH 3 COOH (blank 1)
H2CO3 (blank 1)
H3PO4 (blank 1)
$\mathrm{pH}=\mathrm{pKa1}$ (blank 2)
$\mathrm{pH}=\mathrm{pKa} 2$ (blank 2)
$\mathrm{pH}=\mathrm{pKa} 3$ (blank 2)
$\mathrm{pH}=0.5\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)($ blank 2)
$\mathrm{pH}=0.5\left(\mathrm{pK}_{\mathrm{a} 2}+\mathrm{pK}_{\mathrm{a} 3}\right)($ blank 2)
$\mathrm{K}_{\mathrm{a} 1}$ and doing an equlibrium calculation (blank 2)
K_{b} and doing an equlibrium calculation (blank 2)
2. Soda has a pH between 3 and 4 . Soda makers often add phosphoric acid to give a tart taste to soda. 20 ml of 0.1 M phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{pK}_{\mathrm{a} 1}=2.1, \mathrm{pK}_{\mathrm{a} 2}=7.2, \mathrm{pK}_{\mathrm{a} 3}=12.3\right)$ is titrated with 0.1 M NaOH .

a. In the phosphoric acid titration curve, pH 4.65 is the pH at the \qquad . pH 7.2 is the pH at the \qquad . starting point (blank 1)
$1^{\text {st }} 1 / 2$ way point (blank 1)
$1^{\text {st }}$ endpoint (blank 1)
$2^{\text {nd }} 1 / 2$ way point (blank 1)
$2^{\text {nd }}$ endpoint (blank 1)
$3^{\text {rd }} 1 / 2$ way point (blank 1)
$3^{\text {rd }}$ endpoint (blank 1)
$4^{\text {th }} 1 / 2$ way point (blank 1)
$4^{\text {th }}$ endpoint (blank 1)
starting point (blank 2)
$1^{\text {st }} 1 / 2$ way point (blank 2)
$1^{\text {st }}$ endpoint (blank 2)
$2^{\text {nd }} 1 / 2$ way point (blank 2)
$2^{\text {nd }}$ endpoint (blank 2)
$3^{\text {rd }} 1 / 2$ way point (blank 2)
$3^{\text {rd }}$ endpoint (blank 2)
$4^{\text {th }} 1 / 2$ way point (blank 2)
$4^{\text {th }}$ endpoint (blank 2)
b. To calculate the pH at the $3^{\text {rd }}$ endpoint in the phosphoric acid titration curve, I would need to know K_{b} and set up an equilibrium calculation using the \qquad reaction. The numerical value of K_{b} is \qquad .
$1^{\text {st }}$ blank: give a one or two word answer. $2^{\text {nd }}$ blank: Write a number in scientific notation as _._E_ _ . E.g.,
1.1E11. Use 2 significant figures. Separate each answer with a comma.

Base hydrolysis, $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 3}=1 \mathrm{E}-14 / 10^{-12.3}=2.0 \mathrm{E}-02$
c. I could use phosphate $\left(\mathrm{PO}_{4}^{-3}\right)$ and \qquad to make a pH \qquad buffer.
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (blank 1)
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(blank 1)
HPO_{4}^{-2} (blank 1)
PO_{4}^{-3} (blank 1)
2 (blank 2)

5 (blank 2)
7 (blank 2)
12 (blank 2)
d. To make soda with a pH of 3.5 , I would use \qquad as the acid and \qquad as the base. The ratio of [base] to [acid] is
Blank 3: give a number with 3 significant figures only in "Other". Do not include text.
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (blank 1)
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(blank 1)
$\mathrm{HPO}_{4}{ }^{-2}$ (blank 1)
$\mathrm{PO}_{4}{ }^{-3}$ (blank 1)
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (blank 2)
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(blank 2)
HPO_{4}^{-2} (blank 2)
$\mathrm{PO}_{4}{ }^{-3}$ (blank 2)
Other
25.1

Use Henderson-Hasselbach equation: $\mathrm{pH}=\mathrm{pKa}+\log$ ([base]/[acid]).
$3.5=2.1+\log \left(\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]\right)$
$\log \left(\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]\right)=1.4$
$\left(\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]\right)=10^{1.4}=25.1$

Quiz 7 solutions

1. Consider the acid dissociation reaction: $\mathrm{HA}<==>\mathrm{H}^{+}+\mathrm{A}^{-}$.

For a weak acid at equilibrium, there is \qquad HA than $\mathrm{H}^{+}+\mathrm{A}^{-}$. This means K_{a} for this reaction is \qquad and
pKa should be \qquad —.
more (blank 1)
same (blank 1)
less (blank 1)
Equal to 1 (blank 2)
Greater than 1 (blank 2)
Less than 1 (blank 2)
Larger than 1 (blank 3)
small or negative (blank 3)
2. NH_{3} (ammonia) is a weak base. Graph __ represents the hydrolysis of ammonia because there are \ldots ___ reactants than products as represented by the chemical equation \qquad .

A

A (blank 1)
B (blank 1)
C (blank 1)
More (blank 2)
Same amount of (blank 2)
Less (blank 2)
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{NH}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$(blank 3)
$\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}<==>\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ (blank 3)
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}($blank 3$)$
3. 0.05 M acetic acid has a _ $\left[\mathrm{H}^{+}\right]$than 0.2 M acetic acid because higher concentration means \qquad pH .
higher (blank 1)
same (blank 1)
lower (blank 1)
higher (blank 2)
same (blank 2)
lower (blank 2)
4. You have a 0.1 M solution of an acid, HA. This acid has a $\mathrm{Ka}=1.2 \mathrm{E}-5$.
a. The chemical equation for this reaction is \qquad .
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$(blank 1)
$\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}<==>\mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O}$ (blank 1)
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{HA}+\mathrm{OH}^{--}($blank 1$)$
b. The $\left[\mathrm{H}^{+}\right]=\ldots \mathrm{M}$ at equilibrium.

Give a number with 2 significant figures in scientific notation as x.xE-x, e.g., 1.1E-4.
1.1E-3
c. The pH of this acid is \qquad .
Give a number with 2 significant figures.
3.0
$\mathrm{HA}<==>\mathrm{H}^{+}+\mathrm{A}^{-}$
0.100
x x x
0.1-x $x \quad x$
1.2E-5 $=(x)(x) /(0.1-x)=(x)(x) /(0.1)$
solve for $x=\left[\mathrm{H}^{+}\right]=1.1 \mathrm{E}-3$
$\mathrm{pH}=-\log (1.1 \mathrm{E}-3)=3.0$
5. You have a 0.1 M solution of a base, A^{-}. This base has a $\mathrm{Kb}=4.3 \mathrm{E}-11$.
a. The equation I would use to calculate $\left[\mathrm{OH}^{-}\right]$is \qquad $C=$ concentration of A^{-}.
$\mathrm{Kb}=(\mathrm{C}) /(\mathrm{x})(\mathrm{x})$
$\mathrm{Kb}=\mathrm{x} / \mathrm{C}-\mathrm{x}$
$\mathrm{Kb}=(\mathrm{C}-\mathrm{x})(\mathrm{C}-\mathrm{x}) /(\mathrm{x})$
$\mathrm{Kb}=(\mathrm{x})(\mathrm{x}) /(\mathrm{C})$
b. The $\left[\mathrm{OH}^{-}\right]=\ldots \mathrm{M}$ at equilibrium.

Give a number with 2 significant figures in scientific notation as x.xE-x, e.g., 1.1E-4.
2.1E-6
c. The pH of this base is \qquad .
Give a number with 2 significant figures in "Other". Separate each answer with a comma.
8.3
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{HA}+\mathrm{OH}^{-}$

0.1	0	0
x	x	x
$0.1-x$	x	x

0.1-x $\quad \mathrm{x}$ -
4.3E-11 $=(x)(x) /(0.1-x)=(x)(x) /(0.1)$
solve for $x=\left[\mathrm{OH}^{-}\right]=2.1 \mathrm{E}-6$
$\mathrm{pOH}=-\log (2.1 \mathrm{E}-6)=5.7$
$\mathrm{pH}=14-\mathrm{pOH}=14-5.7=8.3$

Quiz 6 solutions

1. A beverage is carbonated by dissolving $\mathrm{CO}_{2}(\mathrm{~g})$ into the drink:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{eq}}=0.036 \text { at } 25^{\circ} \mathrm{C}
$$

a. Graph \qquad represents this reaction because there are \qquad reactants and \qquad products.

A (blank 1)
B (blank 1)
C (blank 1)
More (blank 2)
Same (blank 2)
Less (blank 2)
More (blank 3)
Same (blank 3)
Less (blank 3)
b. 1 mole of $\mathrm{CO}_{2}(\mathrm{~g})$ is bubbled into 1 liter of water: $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})$.

The equilibrium constant equation for this reaction is $\mathrm{Keq}=$ \qquad . The equilibrium concentration of CO_{2} (aq) $=$ \qquad M.

An equilibrium constant equation for $A+B<==>C$ is $\mathrm{Keq}=[C] /[A][B]$. Blank 1: give the right side of the equation only in "Other". Blank 2: give a number with 2 significant figures only in "Other". Do not include text. Separate each answer with a comma.
$\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{~g})\right], 0.035$

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq}) . \quad \mathrm{K}_{\mathrm{eq}}=\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{~g})\right]
$$

Initial 10
Reacts x x
Equilibrium 1-x x
$\mathrm{K}_{\mathrm{eq}}=\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=\mathrm{x} /(1-\mathrm{x})=0.036$
Solve for x : $x=0.036(1-x)=0.036-0.036 x$
$1.036 x=0.036$
$x=0.036 / 1.036=0.035=\left[\mathrm{CO}_{2}(\mathrm{aq})\right]$ at equilibrium
c. Bubbling more $\mathrm{CO}_{2}(\mathrm{~g})$ into 1 liter of water \qquad the $\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{~g})\right]$ ratio. To get the system back to , the reaction shifts to make more \qquad -
Blank 2: give a one word answer in "Other".
increases (blank 1)
decreases (blank 1)
does not change (blank 1)
CO_{2} (g) (blank 3)
CO_{2} (aq) (blank 3)
Other
Equilibrium
2 points d . You can keep the soda from going flat by keeping the soda cold.
This means Keq at a temperature lower than $25^{\circ} \mathrm{C}$ is \qquad Keq at $25^{\circ} \mathrm{C}$. This means $\Delta \mathrm{H}$ for this reaction is because heat is a \qquad and lowering the temperature is like \qquad heat and shifts the reaction toward
the side.
Greater than (blank 1)
Equal to (blank 1)
Less than (blank 1)
exothermic (blank 2)
endothermic (blank 2)
reactant (blank 3)
product (blank 3)
adding (blank 4)
removing (blank 4)
reactant (blank 5)
product (blank 5)
neither (blank 5)

