
# Objective 10

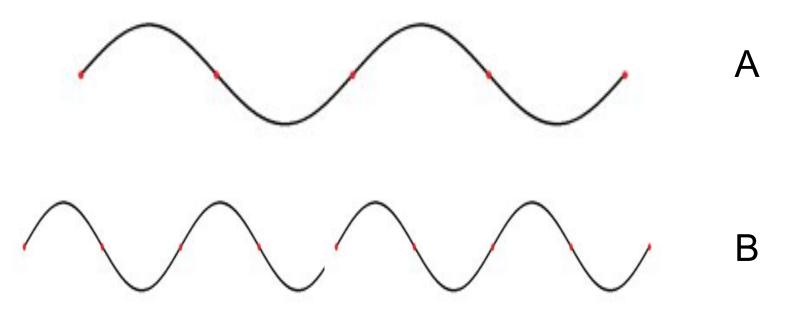
Light and Color Relate EM radiation properties, Describe how light is produce with E level diagrams, Understand quantization.





# Fiat Lux "Let There Be Light"

## Light is Electromagnetic (EM) Radiation


EM radiation has Electric and Magnetic Field components Transmission of energy by **Waves** 

Animation: <a href="http://dwb4.unl.edu/ChemAnime/atomic\_orbits.htm">http://dwb4.unl.edu/ChemAnime/atomic\_orbits.htm</a>

EM Radiation travels at <u>speed of light</u> ( $c = 3.00 \times 10^8$  m/sec)

**Energy = E** (in J) = 
$$hv = hc/\lambda$$

where h = Planck's constant =  $6.63 \times 10^{-34}$  J sec  $\nu$  = frequency = c/  $\lambda$  $\lambda$  = wavelength Objective: relate wavelength to frequency to energy Light is a Wave - quantified by wavelength, frequency, speed, and <u>amplitude</u>.



Which wave has the longer wavelength? Which wave has the higher frequency? Which wave has the higher energy?

More wave properties: Reflection, Refraction, Diffraction

#### Color is Light We Can See - Visible Light

A supermarket scanner uses a He-Ne laser, which emits 656 nm red light.

Objective: Calculate the energy in J of 656 nm red light.

a. 6.56 x 10<sup>7</sup> b. 4.57 x 10<sup>14</sup> c. 3.03 x 10<sup>-19</sup>



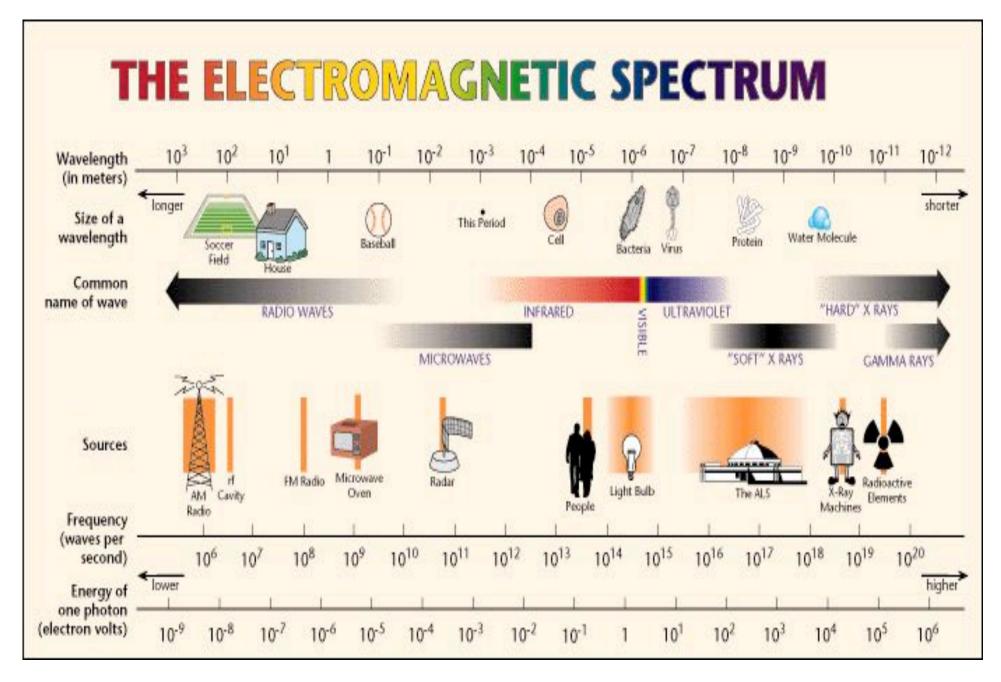
http://www.laserfest.org/lasers/innovations.cfm

1974: The first barcode scanner used in supermarkets.(1st public laser)

#### Color is Light We Can See - Visible Light

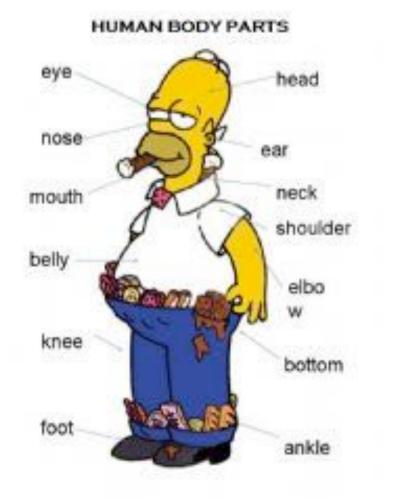
Calculate the energy in J of 656 nm red light.

E (in J) =  $hv = hc/\lambda$ =  $(6.63x10^{-34} \text{ J sec})(3.00 \times 10^8 \text{ m/sec})$  $656 \times 10^{-9} \text{ m}$ 




http://www.laserfest.org/ lasers/innovations.cfm

= 3.03 x 10<sup>-19</sup> J


Visible light is one slice of the Electromagnetic Spectrum

Where does light (EM radiation) come from?



http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html

#### Our Body is a Good Detector of EM Radiation



http://www.eslsmartboard.com/vocabulary\_lessons/face\_and\_body/human\_body/

#### EM Radiation Detectors:

<u>Charge Coupled Device</u> (CCD) – UV, Vis, and IR photon hits doped Si and ejects electron (PE effect)  $\rightarrow$  electrical signal



http://www.specinst.com/What\_Is\_A\_CCD.html

Photomultiplier tube, film, CMOS Photo-conductive cells, e.g., CdS Photovoltaic cells, e.g., Se

X-rays – photographic film (Ag), semiconductors (Si (Li), CdTe)

Scientists, such as astronomers, like to talk about <u>redshifts</u> and <u>blueshifts</u>.

If the universe is *expanding*, as astronomers believe, would you observe a redshift and blueshift?



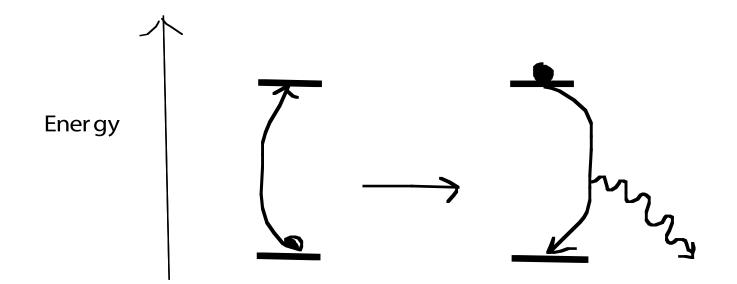
http://scienceblogs.com/startswithabang/2011/12/02/dark-energy-accelerated-expans/

The Radiation Type Has a Different Effect on Matter

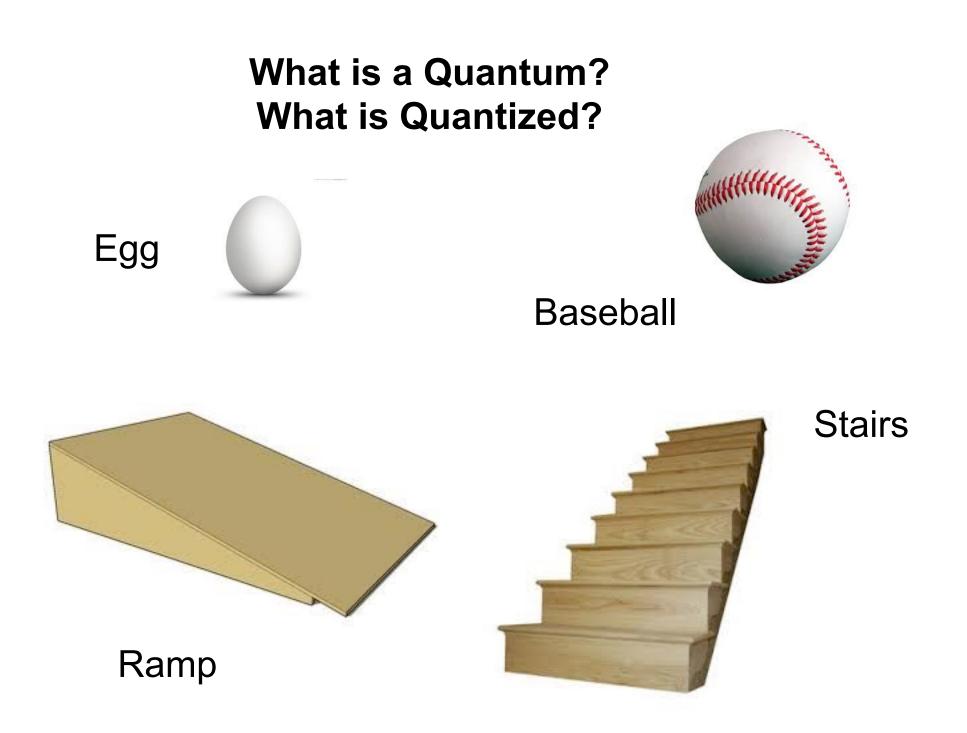
Microwaves Cause Molecules to Rotate (spin)

IR Causes Bonds to Vibrate

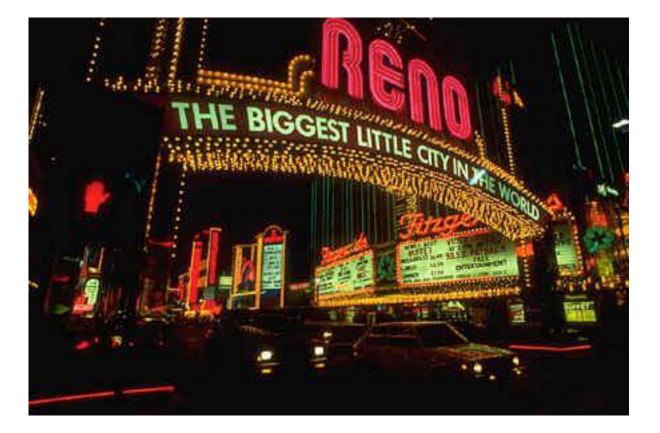
Visible and UV Causes Bonds to Break!




Water boils when placed in a microwave oven but will ice melt in a microwave?


http://www.123rf.com/photo\_8416291\_hand-drawn-illustrationof-a-microwave-oven-on-white-background.html **Objective:** Describe How Light Is Produced

When a \_\_\_\_\_ absorbs the right amount of E, an \_\_\_\_\_ undergoes a transition from a \_\_\_\_\_ energy state to a \_\_\_\_\_ energy state (excited state).


Light is Produced when an \_\_\_\_\_ undergoes a transition from a \_\_\_\_\_ energy state to a \_\_\_\_\_ energy state.



What does "energy of an electron is quantized" mean?



#### Lab 8: How is light produced in a Ne gas discharge tube?



http://www.m2c3.com/chemistry/VLI/M1\_Topic2/M1\_Topic2\_print.html

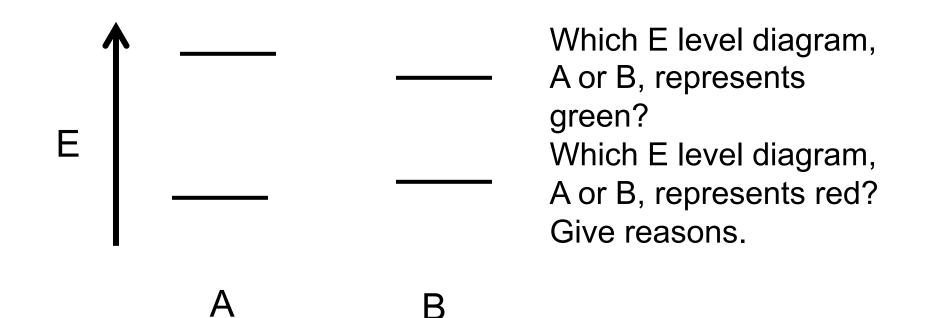
Why do *different* substances emit *different* colors or wavelengths of light?

#### **Fireworks**

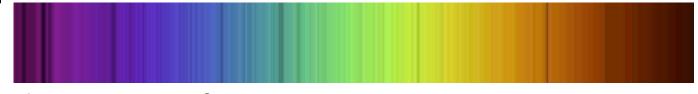
http://www.conciergepreferred.com/navy-pier-fireworks/ 4679-fourth-of-july-fireworks-at-navy-pier-2012.html






Flame Tests

Why do *different* substances emit *different* colors or wavelengths of light?

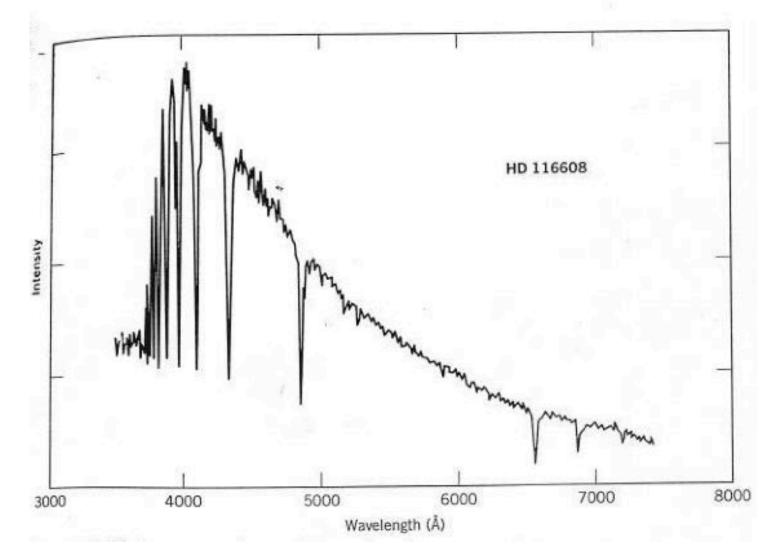

#### **Fireworks**

http://www.conciergepreferred.com/navy-pier-fireworks/ 4679-fourth-of-july-fireworks-at-navy-pier-2012.html





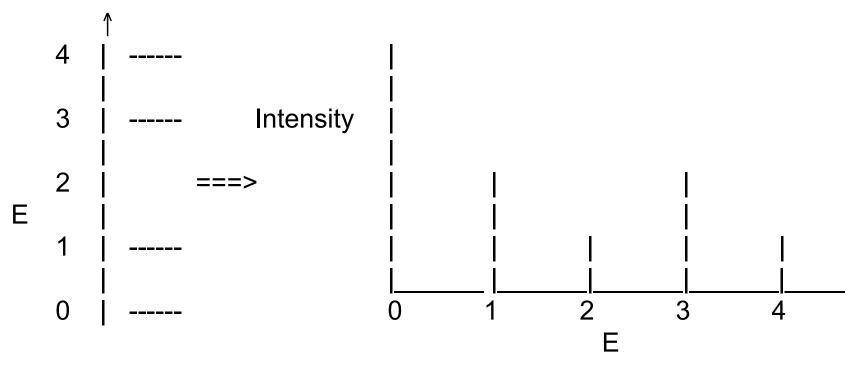
Astronomers use emission spectra to identify a star's composition.




Emission spectrum of sun



H emission spectrum http://coolcosmos.ipac.caltech.edu/cosmic\_classroom/ir\_tutorial/spec.html

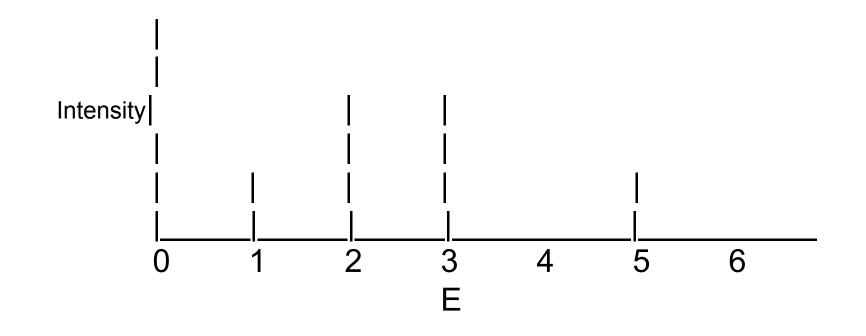

A spectrometer is used to measure an emission spectrum. How does a spectrometer work? The emission spectrum tells us the composition of this star.



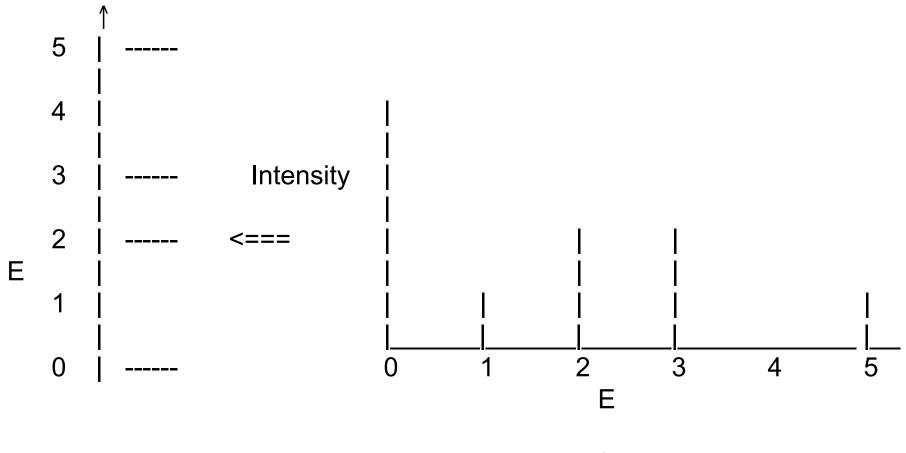
What is the composition of this star?

Objective: relate emission spectrum to electronic structure **An Emission Spectrum** tells us about **Electronic Structure** (energy states of electrons in an atom or molecule)

Given an <u>energy level diagram</u>, draw an <u>emission spectrum</u> that fits the diagram.




Energy Level Diagram

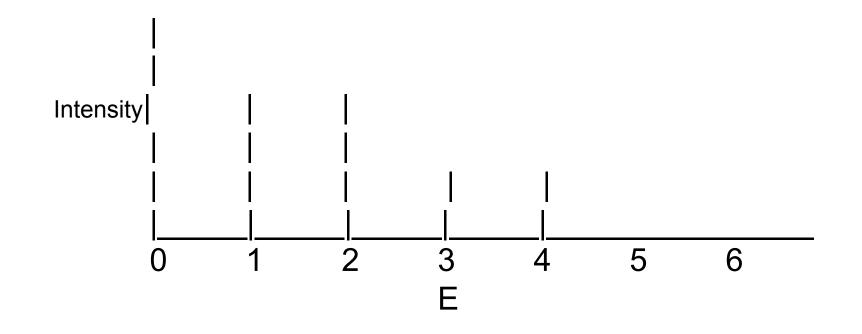

**Emission Spectrum** 

**Objective:** relate emission spectrum to electronic structure

You measured the emission spectrum of a new substance you have just synthesized. Determine the electronic structure of this substance. In other words, draw an energy level diagram that fits the emission spectrum.



# An Emission Spectrum tells us about Electronic Structure Solution:




**Energy Level Diagram** 

**Emission Spectrum** 

**Objective:** relate emission spectrum to electronic structure

You measured the emission spectrum of a new substance you have just synthesized. Determine the electronic structure of this substance. In other words, draw an energy level diagram that fits the emission spectrum. See Practice Problem 3.



## The *Emission Spectrum* of the <u>*H* atom</u> is described by <u>Bohr's Model</u>

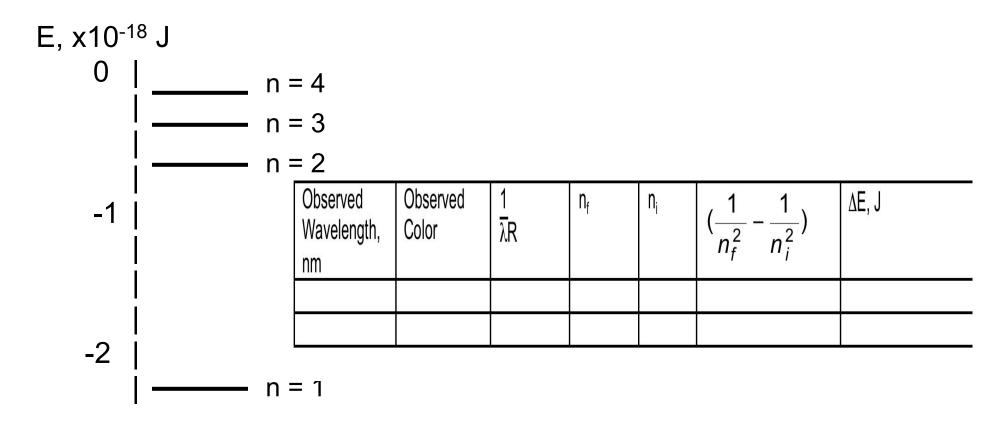
Postulates:

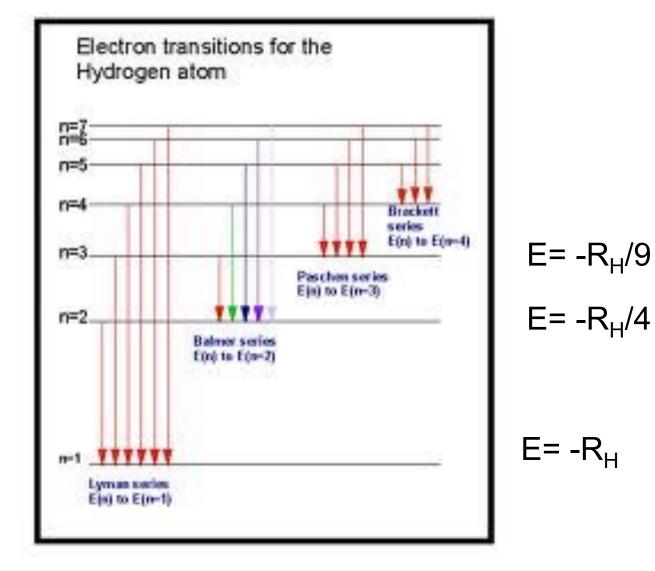
1. Energy of an electron has specific, not arbitrary, values (energy of an electron is *quantized*)

$$E = -R_H/n^2$$
 where  $R_H = Rydberg's$  constant = 2.18x10<sup>-18</sup> J  
and n = 1, 2, 3, ...

# This Equation Can <u>ONLY</u> Be Used for the <u>H atom</u>!!

2. Electrons can undergo transitions from one energy state to another:


Lower E state --> Higher E state Higher E state --> Lower E state (2 others)


absorption emission

What is E of the n = 1 electron energy state in H? What wavelength is emitted in the n = 2 to n = 1 transition?

# Hydrogen Emission Spectrum

Lab 8. Identify the electron states that produces each color.





http://www.files.chem.vt.edu/RVGS/ACT/notes/noteselectronic\_structure.html

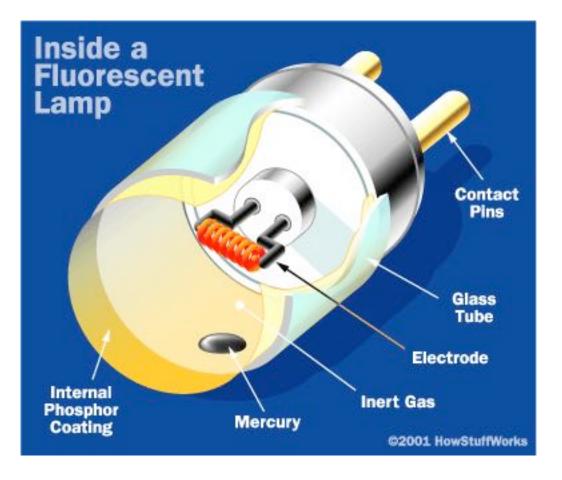
E, J

Light is Used In Many Different Ways and Applications

Fluorescent lights <a href="http://home.howstuffworks.com/fluorescent-lamp.htm">http://home.howstuffworks.com/fluorescent-lamp.htm</a>

Lasers Supermarket scanners - He/Ne laser

TV <u>http://electronics.howstuffworks.com/tv.htm</u> Electron gun inside TV <u>http://electronics.howstuffworks.com/question694.htm</u>


LCD http://electronics.howstuffworks.com/lcd2.htm

LED – see 2014 Nobel Prize in Physics

Reactant in Chemical Reactions - Photochemistry Cameras - analog and digital

Information transfer (radio, cell phones, fiber optics)

#### How Fluorescent Lamps Work (<u>http://home.howstuffworks.com/fluorescent-lamp1.htm</u>)



Hg (I) --> Hg (g) Hg emits UV. UV excites phosphor. Phosphor emits white light.

What excites Hg?

Why do *different* substances emit *different* colors or wavelengths of light?

*Mercury (Hg) Is Used In Fluorescent Lights* which is the reason fluorescent lights should <u>not</u> be thrown out with the garbage.

The 546.1 nm line is used to calibrate light detectors and diffraction gratings.

Calculate the frequency and energy in J/photon and kJ/mole.

What Is A *Photon*?

# Light as a Reactant in a Chemical Reaction

<u>Dentistry</u>: Blue light for curing composite resins



http:// science.howstuffworks.com/ zoology/question554.htm



http://laserpointerforums.com/f38/blueray-whitens-teeth-47683.html

# *Light as a Product in a Chemical Reaction*

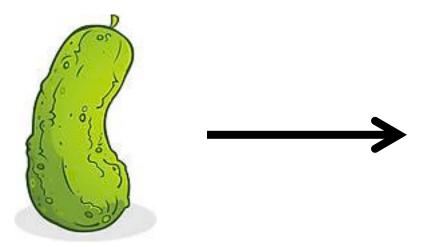
Fireflies Light sticks



http://onlyhdwallpapers.com/tag/lightsabers/

### Supply Energy to Produce Light

http://iet.jrc.ec.europa.eu/energyefficiency/ residential-lighting/european-cfl-qualitycharter






## Supply Light to Produce Energy

http://www.gizmag.com/low-gradesilicon-solar-cell-efficiency/27426/

#### Lab 8: Glowing pickle?? What makes the pickle glow this color?





http://www.fotosearch.com/illustration/ pickle.html

https://portal.magnet.fsu.edu/lists/announcements/ dispform.aspx?id=162

# Lasers are used in supermarket scanners, medical and industrial uses.

How does a laser work? See <a href="http://science.howstuffworks.com/laser.htm">http://science.howstuffworks.com/laser.htm</a>

Laser Properties:

1. Directionality (tight beam, strong and focused). Compare to flashlight.

2. High spectral brightness

3. Monochromaticity (spectral purity) – narrow bandwidths. Some lasers have bandwidths < 1 MHz (or 10<sup>-4</sup> cm<sup>-1</sup>)

4. Coherence (light waves of similar frequency and well defined phase relationships)

5. Short pulses – some lasers have pulse widths  $< 10^{-13}$  sec

#### <u>3 Elements of a Laser:</u>

- 1. Active medium
- 2. Energy pump source (to create population inversion)
- 3. Resonant cavity to contain light

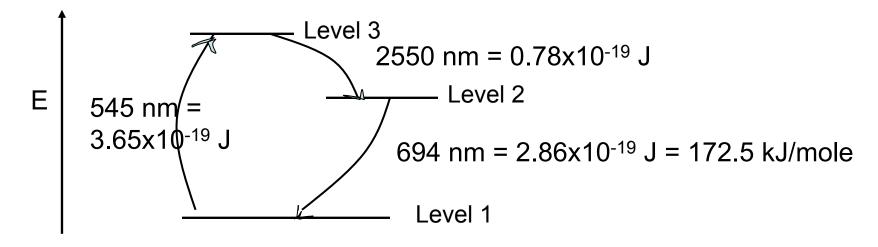
The gemstone ruby is alumina  $(AI_2O_3)$  doped with  $Cr^{3+}$ . The color of a ruby is due to electron transitions of  $Cr^{3+}$  in alumina. These electron transitions can be used in a ruby laser. Three transitions occur: one transition corresponds to a wavelength of 545 nm, another transition corresponds to a wavelength of 694 nm, and a third transition corresponds to a wavelength of 2550 nm. See Practice Problem 5.

| <br>Level 3 |    |         |  |  |
|-------------|----|---------|--|--|
|             |    | Level 2 |  |  |
|             |    |         |  |  |
|             | Le | evel 1  |  |  |

a. Rubies are red. Which transition gives ruby its color? Be specific with the initial and final energy levels. Give reasons.

b. In a laser,

(i) a flash tube excites (pumps) electrons in  $Cr^{3+}$  from Level 1 to Level 3.


Which wavelength corresponds to this transition?

(ii) Electrons from Level 3 undergo a transition to Level 2 to release heat and create a population inversion (high number of excited state electrons). Which wavelength corresponds to this transition?

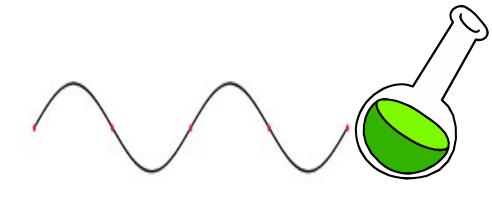
Confirm that  $\Delta E$  for the Level 1 to Level 3 transition equals the sum of  $\Delta E$  for the Level 3 to Level 2 transition and  $\Delta E$  for the Level 2 to Level 1 transition.

<u>Solution</u>: The color of a ruby is due to electron transitions of Cr<sup>3+</sup> in alumina. Three transitions occur:

| λ, nm | Color | ΔE, J                    | ΔE, kJ/mole | Transition |
|-------|-------|--------------------------|-------------|------------|
| 545   | green | 3.65 x 10 <sup>-19</sup> | 219.7       | 1> 3       |
| 694   | red   | 2.87 x 10 <sup>-19</sup> | 172.5       | 2> 1       |
| 2550  | IR    | 0.78 x 10 <sup>-19</sup> | 47.0        | 3> 2       |

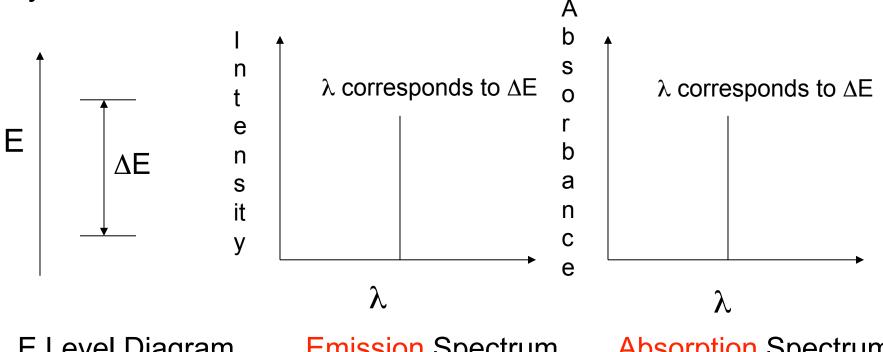


 $\Delta E_{1->3} = \Delta E_{3->2} + \Delta E_{2->1}$ 3.65 x 10<sup>-19</sup> J = 0.78 x 10<sup>-19</sup> J + 2.87 x 10<sup>-19</sup> J


## Transition Metals Give Gemstones Their Color

| Gemstone  | Color                                | Formula                                                                       |
|-----------|--------------------------------------|-------------------------------------------------------------------------------|
| Ruby      | Red                                  | Cr <sup>3+</sup> in Al <sub>2</sub> O <sub>3</sub>                            |
| Emerald   | Green                                | Cr <sup>3+</sup> in beryllium aluminum silicate                               |
| Sapphire  | Blue                                 | Fe <sup>3+</sup> and Ti <sup>4+</sup> in Al <sub>2</sub> O <sub>3</sub>       |
| Garnet    | Red                                  | $Fe^{2+}$ in Mg <sub>3</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub> |
| Peridot   | Yellow-green                         | Fe <sup>2+</sup> in Mg <sub>2</sub> SiO <sub>4</sub>                          |
| Turquoise | Blue-green                           | $Cu^{2+}$ in $CuAl_6(PO_4)_4(OH)_8 \bullet 4H_2O$                             |
| Diamond   | Colorless,<br>pale blue or<br>yellow | N atoms trapped in crystal                                                    |

Reference: <a href="http://scifun.chem.wisc.edu/chemweek/PDF/Gemstones.pdf">http://scifun.chem.wisc.edu/chemweek/PDF/Gemstones.pdf</a>


#### Spectroscopy Is The Interaction of Light With Matter

What happens when light comes in contact with a substance?



Light is reflected off of substance. Light is transmitted through substance. Light is absorbed by the substance. Light is absorbed by the substance, then emitted by substance. An Emission Spectrum Measures the  $\lambda$  's of Light Emitted by a Substance

An Absorption Spectrum Measures the  $\lambda$  's of Light Absorbed by a Substance



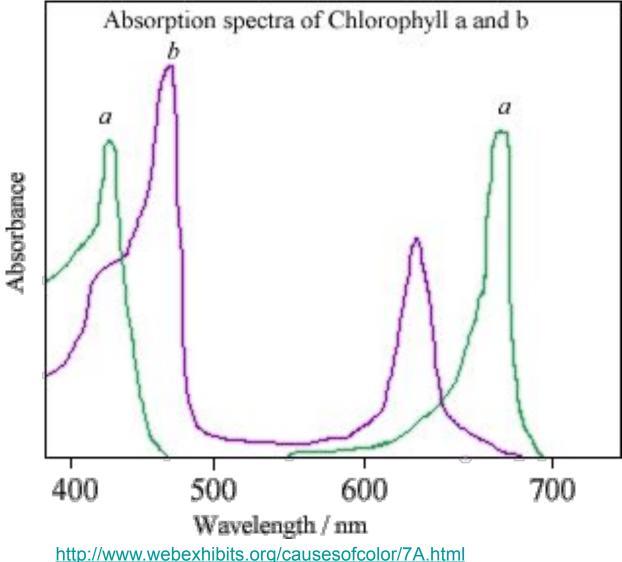
E Level Diagram Shows the energy of electron energy states Emission Spectrum  $\lambda$  's emitted is color you see

Absorption Spectrum  $\lambda$  's absorbed is <u>not</u> color you see ==> complementary color is color you see Color Wheel

#### Objective: relate absorbed color to observed (complementary) color

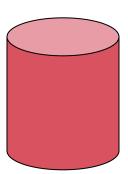


# If a substance absorbs red, it appears \_\_\_\_\_.

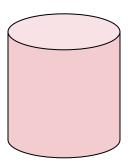



http://technorati.com/lifestyle/green/article/levis-

jeans-reduces-carbon-footprint/


If a substance appears blue, it absorbs \_\_\_\_\_.

### Chlorophyll is the <u>Green</u> pigment in plants What color is absorbed by chlorophyll? See Practice Problem 6.




A Substance Absorbs a <u>Specific Wavelength</u> of Light The Amount of Light Absorbed by the Substance (chromophore) is Proportional to Concentration

## Beer's law: A $\alpha$ C



where A = Absorbance and C = concentration



Which solution absorbs more light? What color is absorbed? Which solution is less concentrated?

Beer's law is used to determine the concentration of a substance in a solution.

E.g., breath analyzer

http://luxfashiontrends.com/ysl-sunglassesspring-summer-collection-for-you.html





Sunglasses are designed:

- to protect your eyes from glare (polarized)
- UV light (DNA damage)
- to make you look cool.

Some sunglasses claim "**100% UV protection**" but ... "Sunglasses Carry Shady UV-Protection Claims, Study Reveals"

(http://www.livescience.com/6524-sunglasses-carry-shady-uv-protection-claims-study-reveals.html)

Lab 8: How would you test sunglasses?

Bring A Pair Of Sunglasses To Lab!

Sunscreens Are Chemicals That Absorb UV Light Sun Protection Factor (SPF) tells you how much UV light is absorbed:

$$SPF = \frac{1}{T} = \frac{1}{1-A}$$

where T = transmittance (light of specific  $\lambda$  transmitted through sample) and A = Absorbance (light of specific  $\lambda$  absorbed by sample)

| SPF | А     |  |
|-----|-------|--|
| 15  | 0.933 |  |
| 20  | 0.95  |  |
| 30  | 0.967 |  |
| 50  | 0.98  |  |

Is it worth getting an SPF over 30?

Lab 8. Absorption Spectra applications

Measure the Absorption Spectra of 2 food colors.

Mix 2 food colors to get a new color. Measure the Absorption Spectrum. Did a chemical reaction occur?

Bring A Colored Food To Lab

Extract the color from the food. Measure the Absorption Spectrum. Is the color from the food a food coloring?

## Wint-O-Green Lifesavers: See Practice Problem 7.



http:// familyembellishments.blo gspot.com/2011/06/ wintergreen-lifesaversspark-great.html



http://scienceblogs.com/photosynthesis/ 2009/09/23/luminescent-candy/

## Light and Color

Where does light come from?

How is light produced?

Why do different substances have different color?

How is light studied?

What does the study of light tell us?

## TiO<sub>2</sub> is a White Pigment used in Paint and Food coloring



Nano-sized TiO<sub>2</sub> added to concrete keeps concrete white

http://cen.acs.org/articles/89/i24/Building-Small.html

Self-cleaning property: TiO<sub>2</sub> + UV light --> excited TiO<sub>2</sub>\*

 $TiO_2^*$  works as a catalyst for oxidizing organic grime and "eats" smog (NO<sub>x</sub>, SO<sub>x</sub>, carbon monoxide, aromatics, ammonia, and aldehydes)

Add  $TiO_2$  to surfaces to reduce air pollution.

<u>Application</u>: Far IR is used in chemical analysis and 1 Terahertz (THz) =  $10^{-12}$  Hz) Development of instrumentation for THz spectroscopy. Detects small amounts of C-4 explosives hidden in sealed envelopes (590 cm<sup>-1</sup>). C-4 cannot be detected by X-rays or metal detectors.



Imaging in medical, security, and other applications that capitalize on the light's ability to penetrate plastics, paper, and textiles

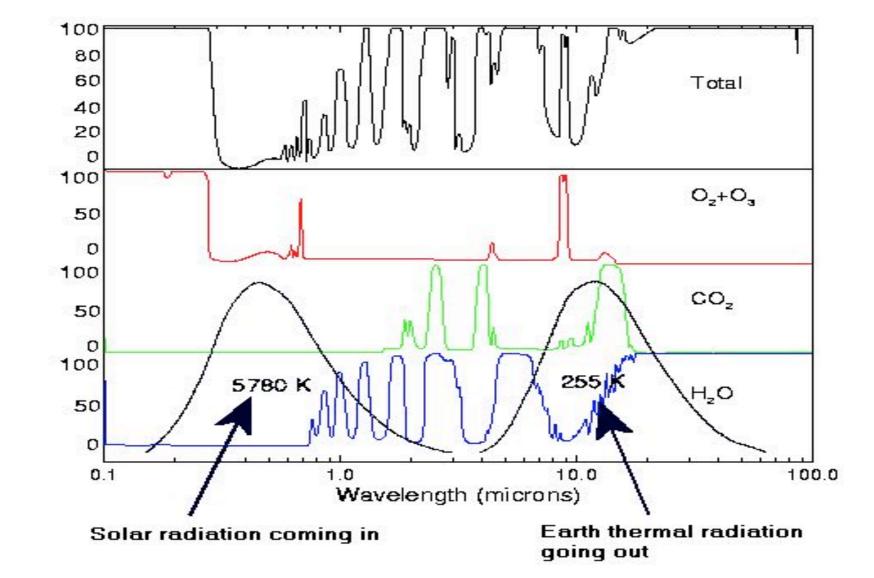
## Burning of Fossil Fuels ==> Global Warming

<u>2007</u>: World oil demand = 85 million barrels/day

US oil demand = 20 million barrels/day, approx 10 million barrels/day for gasoline, 141 billion gallons gas/year

California = 16 billion gallons gas/year

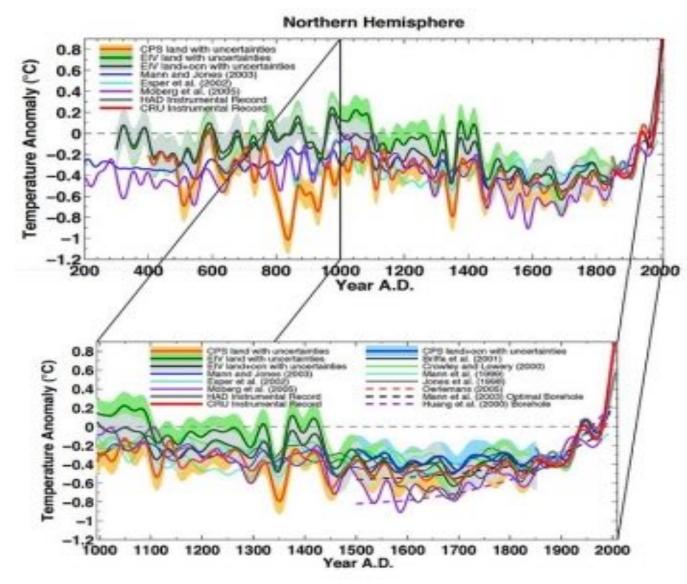
Gasoline is a mixture of hydrocarbons.


One gallon of burned octane produces 8250 g of  $CO_2$ .

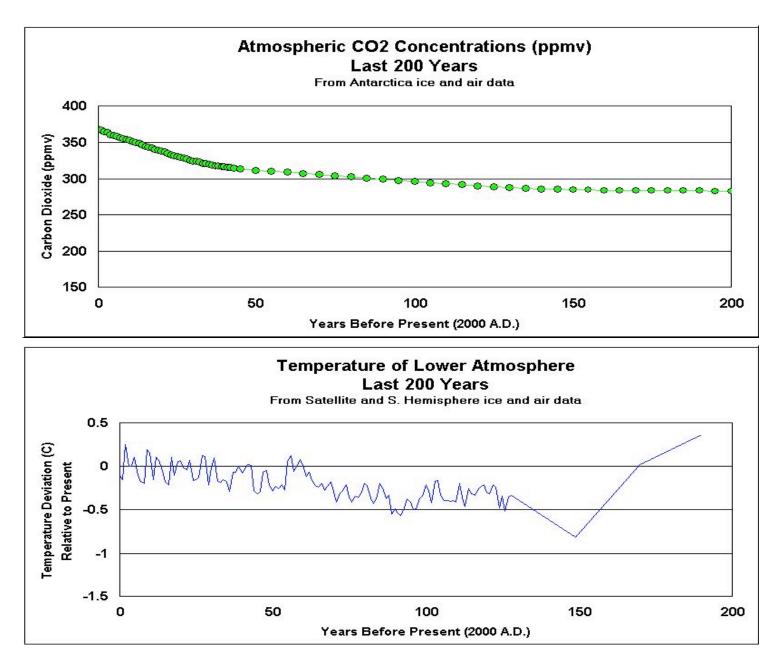
## **CO**<sub>2</sub> absorbs IR radiation ==> IR = heat

The amount of IR radiation (heat) absorbed by  $CO_2$  is proportional to the  $CO_2$  concentration. (Beer's law: A  $\alpha$  C)

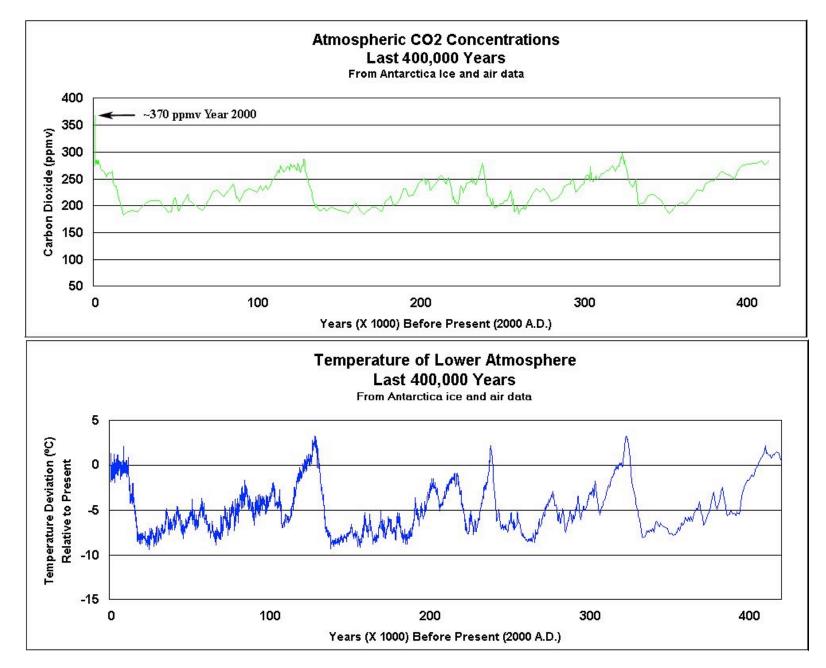
## Atmospheric [CO<sub>2</sub>] = 380 ppm


References: Greenhouse gases explained http://tonto.eia.doe.gov/energyexplained/index.cfm?page=environment\_about\_ghg CO<sub>2</sub> absorption spectrum http://www.iitap.iastate.edu/gccourse/forcing/images/image7.gif Solar radiation in and earth's thermal radiation out http://www.te-software.co.nz/blog/augie auer.htm Global warming potential table <a href="http://unfccc.int/ghg\_data/items/3825.php">http://unfccc.int/ghg\_data/items/3825.php</a> CO2 and T data http://www.geocraft.com/WVFossils/temp\_vs\_CO2.html CO<sub>2</sub> and T data last 800,000 years http://en.wikipedia.org/wiki/File:Co2-temperature-plot.svg Cold facts on global warming http://brneurosci.org/co2.html Global warming: a chilling perspective http://www.geocraft.com/WVFossils/ice\_ages.html#anchor2117056 Iowa State global change course http://www.iitap.iastate.edu/gccourse/units01.html

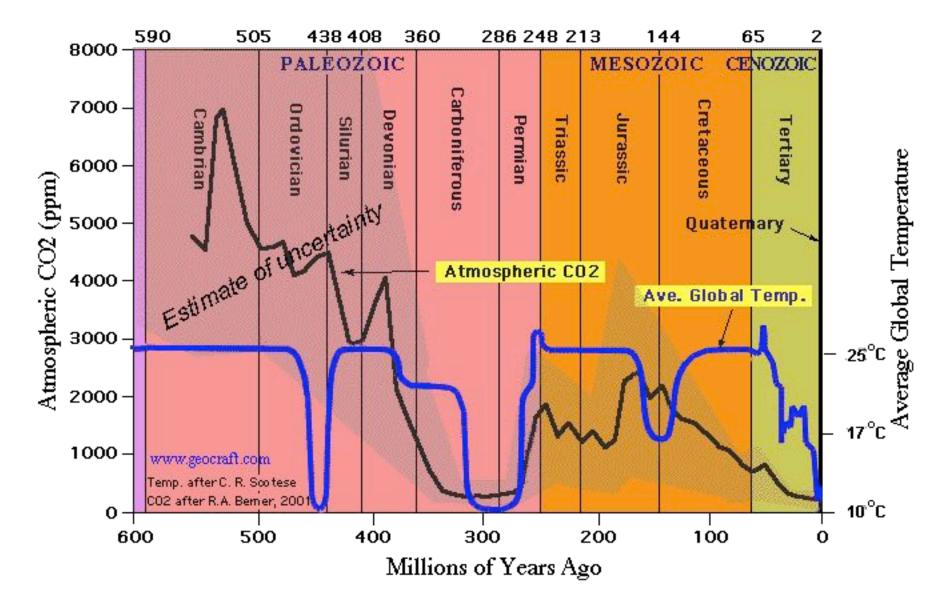



Absorption Spectra of Atmospheric Gases and Solar/Earth Radiation

http://noconsensus.wordpress.com/2010/04/19/radiative-physics-yes-co2-does-create-warming/


http://cen.acs.org/articles/90/i50/Michael-Manns-Hockey-Stick.html 12/10/12, CEN, p. 52 Book Review: "The Hockey Stick And The Climate Wars: Dispatches From The Front Lines", by Michael E. Mann




More than a dozen independent temperature reconstructions affirm the conclusion that Earth's temperature has risen sharply in the past century.



http://www.geocraft.com/WVFossils/last\_200\_yrs.html



http://www.geocraft.com/WVFossils/last\_400k\_yrs.html



http://www.geocraft.com/WVFossils/Carboniferous\_climate.html#anchor147264

<u>Carbon Cycle</u>: Life on earth is carbon-based Plants absorb  $CO_2$  and emit oxygen as a waste product. Humans and animals breathe oxygen and emit  $CO_2$  as a waste product.

<u>All sources</u>: Approx. 200 billion tons of carbon from  $CO_2$  that enter earth's atmosphere each year ( $\frac{1}{2}$  from oceans,  $\frac{1}{2}$  from volcanoes and decaying plants) <u>Human activity</u>: 6 billion tons of carbon from  $CO_2$ .

CO<sub>2</sub> that goes into the atmosphere is recycled by terrestrial plant life and earth's oceans

<u>CO<sub>2</sub> concentration</u>: 380 parts per million (ppm) = less than 4/100ths of 1% of all gases present. Compare to former geologic times.

Is  $CO_2$  is an essential ingredient. Is  $CO_2$  is a nutrient or a pollutant? Is plant growth stimulated by more  $CO_2$ ? <u>http://www.geocraft.com/WVFossils/ice\_ages.html</u>

## Australian sheep and cattle to be vaccinated to reduce $CH_4$ emissions.



WWW.SPUDCOMICS.COM

© 2009 LONNIE EASTERLING

http://spudcomics.com/tag/farting-sheep/

Sheep and cattle in Australia produce 14% of Australia's total greenhouse emissions (measured in  $CO_2$  equivalents).

Vaccine will reduce  $CH_4$ emissions by 20% in these animals (approx. 300,000 metric tons of  $CO_2$ ).

 $CH_4 \approx 21 \text{ x}$  more potent than  $CO_2$ as a greenhouse gas. (Chemical and Engineering News, 6/18/01, p. 104)

#### CEN, 7/29/19, "Minimizing methane from cattle" https://cen.acs.org/business/food-ingredients/DSM-seeks-approval-additive-minimizing/97/i30

A cow releases 70-120 kg of methane annually, mostly by burping. Cow's digestive system has microbes that produce methane.



Livestock accounts for 15% of global greenhouse emissions of which more than  $\frac{1}{2}$  from cattle.

**3-nitrooxypropanol** is a cattle feed additive that can reduce methane emissions by 30%. DSM Co. (Europe) has applied to European regulators to see this additive.

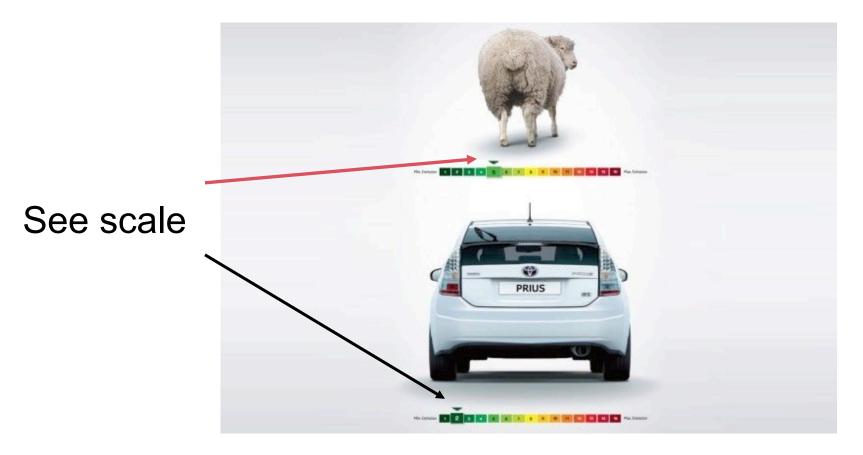


**3-nitrooxypropanol** 

## 1.3 billion cows in the world (2011)



U.S. Livestock produces 139.8 units of TgCO<sub>2</sub> equivalent (teragram carbon dioxide equivalent)


≈ 20% of all human methane production and second only to natural gas systems

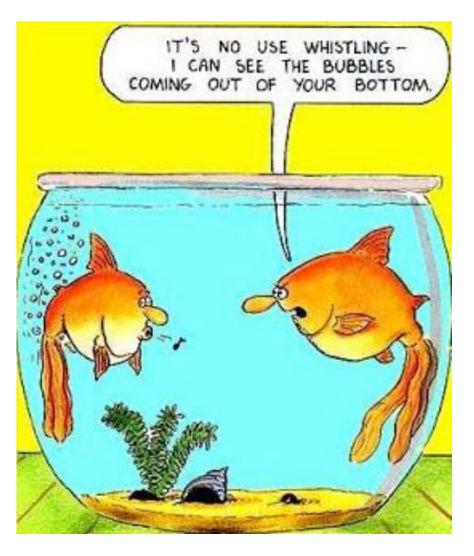
U.S. produces 5,637.9 units of TgCO<sub>2</sub> equivalent per year by burning fossil fuels

http://bigkingken.wordpress.com/2011/07/05/finally-a-post-on-cow-farts/

#### Toyota: Prius exhaust less harmful than sheep emissions

http://www.autoblog.com/2011/01/04/toyota-prius-exhaust-less-harmful-than-sheep-emissions/




**Question**: Does one sheep emit more global warming  $CH_4$  than one Prius emit global warming  $CO_2$ ?

#### Seen in SF



http://www.freerepublic.com/focus/ f-news/1864014/posts

> http://dotsnodds.blogspot.com/2011/02/ when-in-malawi-do-not-fart.html





Search for greenhouse gas emitters by facility, type of factory, amount and type of greenhouse gas, facility location, plant name

http://ghgdata.epa.gov/ghgp/main.do

#### HEATED EXCHANGE

#### HCFCs and HFCs remain in the atmosphere longer than CFCs

| GAS          | GLOBAL WARMING<br>POTENTIAL <sup>a</sup> | LIFETIME<br>[YEARS] |
|--------------|------------------------------------------|---------------------|
| CO2          | 1                                        | 100+                |
| Chlorofluoro | carbons (CFCs)                           |                     |
| CFC-12       | 10,200 +/- 3,750                         | 100.0               |
| CFC-114      | 9,880 +/- 3,460                          | 300.0               |
| CFC-113      | 6,030 +/- 2,110                          | 85.0                |
| CFC-11       | 4,680 +/- 1,640                          | 45.0                |
| Hydrochloro  | fluorocarbons (HCI                       | FCs)                |
| HCFC-142b    | 2,270 +/- 800                            | 17.9                |
| HCFC-22      | 1,780 +/- 620                            | 12.0                |
| HCFC-124     | 599 +/- 210                              | 5.8                 |
| HCFC-123     | 76 +/- 27                                | 1.3                 |
| Hydrofluorod | carbons (HFCs)                           |                     |
| HFC-23       | 14,310 +/- 5,000                         | 270.0               |
| HFC-125      | 3,450 +/- 1,210                          | 29.0                |
| HFC-134a     | 1,410 +/- 490                            | 14.0                |
| HFC-245fa    | 1,020 +/- 360                            | 7.6                 |
| HFC-152a     | 122 +/- 43                               | 1.4                 |

a Referenced to CO<sub>2</sub>, Global warming potential is a measure of relative ability to affect the global climate.

SOURCES: Intergovernmental Panel on Climate Change and Economic Assessment Panel CEN, October 3, 2005, pp. 23-24 Hot Times Ahead For Refrigerants As worry over refrigerants' threat to the ozone layer recedes, concern over global warming rise.

Energy for refrigeration = 1/6 of global energy usage

http://www.nytimes.com/2014/07/27/ magazine/what-do-chinese-dumplings-haveto-do-with-global-warming.html?\_r=0