Objective 9: Energy and heat 2: predict heat and work in a chemical reaction and chemical heat transfer. Apply using Hess' law.

Quiz Practice problems:

Key ideas:

Two types of heat:

Physical heat transfer = when a hot object touches a cold object: $q = m s \Delta T$

Chemical heat transfer = a chemical reaction releases heat (exothermic) to its surroundings or absorbs heat (endothermic) from its surroundings: $q = \Delta H$. Calculate ΔH using Hess' law.

A chemical reaction involves energy.

Hess' law: Δ Hreaction = $\Sigma \, n\Delta H_f$ (products) - $\Sigma \, n\Delta H_f$ (reactants) where n = coefficient in moles in balanced chemical equation and ΔH_f = change in enthalpy of formation.

A formation reaction is a reaction in which a substance is formed from elements in the standard state.

Example: formation reaction of liquid water is $2 H_2(g) + O_2(g) ---> 2 H_2O(I)$

 ΔH_f of an element in its standard state = 0 kJ/mole.

 ΔH_f of a substance tells us how stable or reactive the substance is.

Example: ΔH_f of H_2 (g) = 0 kJ/mole, ΔH_f of H_2 O (I) = -285 kJ/mole.

-285 kJ is a lower energy than 0 kJ so H₂O (I) is more stable or less reactive than H₂ (g).

Skills: Use table of thermodynamic quantities to look up $\Delta H_{formation}$.

Apply Hess' law to calculate $\Delta H_{reaction}$.

Use heat equations, e.g., calculate the amount of water that is heated by a chemical reaction.

- 1. a. Compare ΔH_f of Cl_2 (g) to Cl^{-} (aq). Does chlorine exist as element or ion?
- b. Compare ΔH_f of H₂O (I) to H₂O (g). Does water exist as a liquid or gas at room temperature?
- c. Look up ΔH_f of CO₂ (g). Is CO₂ (g) stable or reactive?
- 2. a. Is heat absorbed or released when water vaporizes to steam? Calculate ΔH_{rxn} for H_2O (I) ---> H_2O (g) to confirm your answer. How is q related to ΔH_{rxn} ?

(Answer: ΔH_f for H_2O (I) = -285 kJ/mole, ΔH_f for H_2O (g) = -241 kJ/mole.

Apply Hess' law, ΔH_{rxn} = [1 x ΔH_f for H_2O (g)] – [1 x ΔH_f for H_2O (l)] = [-241 kJ/mole] – [-285 kJ/mole] = 44 kJ/mole)

- b. Is heat absorbed or released when steam condenses to water? Calculate ΔH_{rxn} for H_2O (g) ---> H_2O (I) to confirm your answer.
- c. Is the same amount of heat involved in each phase change?
- d. When 100° C steam comes in contact with a 25° C object, the 100° C steam condenses to 100° C H₂O (I) and then the H₂O (I) cools until T_f (thermal equilibrium) is reached.

So the heat lost by steam = (moles steam)(ΔH_{rxn} for H_2O (I) --> H_2O (g)) + (mass of water)(specific heat of water)(ΔT) When $100^{\circ}C$ H_2O (I) comes in contact with a $25^{\circ}C$ object, hot H_2O (I) cools until T_f (thermal equilibrium) is reached. So the heat lost by hot water =

Explain why being burned by steam is much worse than being burned by water.

3. In a combustion reaction, a fuel burns (reacts) with O_2 to form water and CO_2 (for a carbon based fuel).

Natural gas, CH_4 , is used in gas stoves: CH_4 (g) + O_2 (g) ---> CO_2 (g) + H_2O (g)

- a. Balance the equation:
- (i) Balance C. 1 C on each side of the equation.
- (ii) Balance H. 4 H on reactant side. 2 H on product side. What coefficient should you use for H₂O?
- (iii) Balance O. 2 O on reactant side. 4 O on product side (2 from CO_2 , 2 from 2 H_2O). What coefficient should you use for O_2 ?
- (iv) Combustion reactions are oxidation-reduction reactions. Which reactant is oxidized? Determine the charge of the element in the reactant and product that is being oxidized.
- b. Apply Hess' law to calculate ΔH_{rxn} . (Look up ΔH_f for CH_4 (g) and H_2O (g). Answer: ΔH_{rxn} between -790 to -810 kJ/mole)
- c. 0.1 moles of CH₄ is burned to heat up 1 liter of water at 25°C. Calculate the final temperature of the water.
- (i) Fill in the blanks: Heat gained by ____ = heat lost by ___
- (ii) Should you use $q = \Delta H$ or $q = ms\Delta T$ for heat gained by ? (Hint: if a chemical reaction occurs, $q = \Delta H$)
- (iii) Should you use $q = \Delta H$ or $q = ms\Delta T$ for heat lost by ?
- (iv) Set up your calculation it should look like:

m s ΔT = - moles of ____ x ΔH (in J/mole)

Remember $\Delta T = T_f - T_i$

Solve for T_f. (Answer: T_f is between 40-45°C)

- 4. Butane, C₄H₁₀, is used in lighters and camping stoves.
- a. Write a chemical equation that represents the combustion of butane.

- b. Calculate ΔH_{rxn} .
- c. Will burning 0.1 moles of butane heat up 1 liter of water at 25° C more or less or the same as burning 0.1 moles of natural gas? Calculate T_f to support your answer.
- 5. You made hot packs and cold packs in lab. An ionic solid is dissolved in water.
- a. If the dissolution of an ionic solid is endothermic, the solid is used in a ____ pack.
- b. KNO_3 can be used in a cold pack. Write a chemical equation and calculate ΔH_{rxn} to confirm this answer.
- c. Calculate the mass of KNO₃ that will lower the temperature of 50 g of water from 25°C to 0°C.
- 6. Fuels are used to produce work. Work involves gases: $w = -p \Delta V$.

When a gas expands $(V_f > V_i \text{ so } \Delta V = V_f - V_i > 0)$, the gas can do work on an object. In other words, the gas produces work so $w = -p \Delta V < 0$.

To compress a gas $(V_f < V_i \text{ so } \Delta V = V_f - V_i < 0)$, some thing, e.g., you, have to do work on the gas. In other words, work is supplied to the gas so $w = -p \Delta V > 0$.

Is $\Delta V > 0$, < 0, or = 0?

Is w > 0, < 0, or = 0?

- a. Explain how a car airbag inflating produces work.
- b. You have a 20 ml syringe. You move the plunger to the 10 ml mark. You plug the end of the syringe. You push on the plunger to move it to the 5 ml mark.
- (i) Is work produced by the gas or is work supplied to the gas?
- (ii) Is work > 0 or < 0? Give reasons.
- c. Work is involved in a chemical reaction if a reactant or product is a gas.

Example: Propane (C_3H_8) is used as a fuel.

 $C_3H_8(g) + 5 O_2(g) ---> 3 CO_2(g) + 4 H_2O(g)$

Compare the moles of gas reactants to the moles of gas products: 6 moles of gas reactants --> 7 moles of gas products $\Delta n = \text{moles of gas products} - \text{moles of gas reactants} = 7 - 6 = 1 \text{ mole}$

According to ideal gas law, PV = nRT. So Δn is directly proportional to ΔV .

If $\Delta n > 0$, then $\Delta V > 0$.

Since $\Delta V > 0$, work must be < 0 (remember w = - p ΔV).

When propane burns, work is produced.

(i) When natural gas (CH₄) burns, is work produced?

Write a balanced chemical equation for the combustion of CH₄.

Compare the moles of gas reactants to the moles of gas products.

Determine ∆n.

Determine ΔV .

Determine w.

- (ii) A fuel should produce work when used in car engine. Which fuel, propane or natural gas, works better in a car engine? Give reasons.
- 7. a. A refrigerator is a heat engine in reverse.

- (i) Is work produced or supplied?
- (ii) What part of the refrigerator is the cold reservoir?
- (iii) How is work converted into heat?
- b. A schematic diagram of a refrigerator is shown below.

- (i) Determine q and w for each step.
- (ii) Which step cools air inside the refrigerator?
- (iii) Would you want the refrigerant to have a high boiling point or low boiling point? Give reasons.
- (iv) Would you want the refrigerant to be compressible or incompressible? Give reasons.