Objective 9: Energy and heat 2: predict heat and work in a chemical reaction and chemical heat transfer. Apply using Hess' law.
Quiz Practice problems:

Key ideas:

Two types of heat:
Physical heat transfer = when a hot object touches a cold object: $q=m s \Delta T$
Chemical heat transfer $=$ a chemical reaction releases heat (exothermic) to its surroundings or absorbs heat
(endothermic) from its surroundings: $q=\Delta H$. Calculate ΔH using Hess' law.
A chemical reaction involves energy.
Hess' law: Δ Hreaction $=\Sigma \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}$ (products) $-\Sigma \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}$ (reactants) where $\mathrm{n}=$ coefficient in moles in balanced chemical equation and $\Delta \mathrm{H}_{\mathrm{f}}=$ change in enthalpy of formation.
A formation reaction is a reaction in which a substance is formed from elements in the standard state.
Example: formation reaction of liquid water is $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{H}_{2} \mathrm{O}$ (I)
$\Delta \mathrm{H}_{\mathrm{f}}$ of an element in its standard state $=0 \mathrm{~kJ} / \mathrm{mole}$.
$\Delta \mathrm{H}_{\mathrm{f}}$ of a substance tells us how stable or reactive the substance is.
Example: $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{H}_{2}(\mathrm{~g})=0 \mathrm{~kJ} / \mathrm{mole}, \Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285 \mathrm{~kJ} / \mathrm{mole}$.
-285 kJ is a lower energy than 0 kJ so $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is more stable or less reactive than $\mathrm{H}_{2}(\mathrm{~g})$.
Skills: Use table of thermodynamic quantities to look up $\Delta \mathrm{H}_{\text {formation }}$.
Apply Hess' law to calculate $\Delta \mathrm{H}_{\text {reaction }}$.
Use heat equations, e.g., calculate the amount of water that is heated by a chemical reaction.

1. a. Compare $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(\mathrm{aq})$. Does chlorine exist as element or ion?
b. Compare $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Does water exist as a liquid or gas at room temperature? c. Look up $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{CO}_{2}(\mathrm{~g})$. Is $\mathrm{CO}_{2}(\mathrm{~g})$ stable or reactive?
2. a. Is heat absorbed or released when water vaporizes to steam? Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to confirm your answer. How is q related to $\Delta \mathrm{H}_{\mathrm{rxn}}$?
(Answer: $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285 \mathrm{~kJ} / \mathrm{mole}, \Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-241 \mathrm{~kJ} / \mathrm{mole}$.
Apply Hess' law, $\Delta \mathrm{H}_{\mathrm{rxn}} .=\left[1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{f}}\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]-\left[1 \times \Delta \mathrm{H}_{\mathrm{f}}\right.$ for $\left.\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]=[-241 \mathrm{~kJ} / \mathrm{mole}]-[-285 \mathrm{~kJ} / \mathrm{mole}]=44 \mathrm{~kJ} / \mathrm{mole}\right)$
b. Is heat absorbed or released when steam condenses to water? Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})--->\mathrm{H}_{2} \mathrm{O}$ (I) to confirm your answer.
c. Is the same amount of heat involved in each phase change?
d. When $100^{\circ} \mathrm{C}$ steam comes in contact with a $25^{\circ} \mathrm{C}$ object, the $100^{\circ} \mathrm{C}$ steam condenses to $100^{\circ} \mathrm{C} \mathrm{H}_{2} \mathrm{O}$ (I) and then the $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ cools until T_{f} (thermal equilibrium) is reached.
So the heat lost by steam $=($ moles steam $)\left(\Delta \mathrm{H}_{\mathrm{rxn}}\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{I})-->\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)+$ (mass of water)(specific heat of water)($\left.\Delta \mathrm{T}\right)$
When $100^{\circ} \mathrm{C} \mathrm{H} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ comes in contact with a $25^{\circ} \mathrm{C}$ object, hot $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ cools until T_{f} (thermal equilibrium) is reached.
So the heat lost by hot water $=$
Explain why being burned by steam is much worse than being burned by water.
3. In a combustion reaction, a fuel burns (reacts) with O_{2} to form water and CO_{2} (for a carbon based fuel).

Natural gas, CH_{4}, is used in gas stoves: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})--->\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. Balance the equation:
(i) Balance C .1 C on each side of the equation.
(ii) Balance H .4 H on reactant side. 2 H on product side. What coefficient should you use for $\mathrm{H}_{2} \mathrm{O}$?
(iii) Balance O. 2 O on reactant side. 4 O on product side (2 from CO_{2}, 2 from $2 \mathrm{H}_{2} \mathrm{O}$). What coefficient should you use for O_{2} ?
(iv) Combustion reactions are oxidation-reduction reactions. Which reactant is oxidized? Determine the charge of the element in the reactant and product that is being oxidized.
b. Apply Hess' law to calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$. (Look up $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Answer: $\Delta \mathrm{H}_{\mathrm{rxn}}$ between -790 to $-810 \mathrm{~kJ} / \mathrm{mole}$)
c. 0.1 moles of CH_{4} is burned to heat up 1 liter of water at $25^{\circ} \mathrm{C}$. Calculate the final temperature of the water.
(i) Fill in the blanks: Heat gained by \qquad $=-$ heat lost by
(ii) Should you use $q=\Delta H$ or $q=m s \Delta T$ for heat gained by ___? (Hint: if a chemical reaction occurs, $q=\Delta H$)
(iii) Should you use $q=\Delta H$ or $q=m s \Delta T$ for heat lost by \qquad
(iv) Set up your calculation - it should look like:
m s $\Delta \mathrm{T}=-$ moles of \qquad $x \Delta H$ (in J/mole)
Remember $\Delta T=T_{f}-T_{i}$
Solve for $T_{f .}$ (Answer: T_{f} is between $40-45^{\circ} \mathrm{C}$)
4. Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, is used in lighters and camping stoves.
a. Write a chemical equation that represents the combustion of butane.
b. Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$.
c. Will burning 0.1 moles of butane heat up 1 liter of water at $25^{\circ} \mathrm{C}$ more or less or the same as burning 0.1 moles of natural gas? Calculate T_{f} to support your answer.
5. You made hot packs and cold packs in lab. An ionic solid is dissolved in water.
a. If the dissolution of an ionic solid is endothermic, the solid is used in a \qquad pack.
b. KNO_{3} can be used in a cold pack. Write a chemical equation and calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ to confirm this answer.
c. Calculate the mass of KNO_{3} that will lower the temperature of 50 g of water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
6. Fuels are used to produce work. Work involves gases: w = $\mathrm{p} \Delta \mathrm{V}$.

When a gas expands ($V_{f}>V_{i}$ so $\left.\Delta V=V_{f}-V_{i}>0\right)$, the gas can do work on an object. In other words, the gas produces work so w = -p $\Delta \mathrm{V}<0$.
To compress a gas $\left(\mathrm{V}_{\mathrm{f}}<\mathrm{V}_{\mathrm{i}}\right.$ so $\left.\Delta \mathrm{V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}<0\right)$, some thing, e.g., you, have to do work on the gas. In other words, work is supplied to the gas so $w=-p \Delta V>0$.
Is $\Delta V>0,<0$, or $=0$?
Is $w>0,<0$, or $=0$?
a. Explain how a car airbag inflating produces work.
b. You have a 20 ml syringe. You move the plunger to the 10 ml mark. You plug the end of the syringe. You push on the plunger to move it to the 5 ml mark.
(i) Is work produced by the gas or is work supplied to the gas?
(ii) Is work >0 or < 0? Give reasons.
c. Work is involved in a chemical reaction if a reactant or product is a gas.

Example: Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is used as a fuel.
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})--->3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Compare the moles of gas reactants to the moles of gas products: 6 moles of gas reactants $-->7$ moles of gas products
$\Delta \mathrm{n}=$ moles of gas products - moles of gas reactants $=7-6=1 \mathrm{~mole}$
According to ideal gas law, $\mathrm{PV}=\mathrm{nRT}$. So $\Delta \mathrm{n}$ is directly proportional to $\Delta \mathrm{V}$.
If $\Delta \mathrm{n}>0$, then $\Delta V>0$.
Since $\Delta V>0$, work must be <0 (remember $w=-p \Delta V$).
When propane burns, work is produced.
(i) When natural gas $\left(\mathrm{CH}_{4}\right)$ burns, is work produced?

Write a balanced chemical equation for the combustion of CH_{4}.
Compare the moles of gas reactants to the moles of gas products.
Determine $\Delta \mathrm{n}$.
Determine ΔV.
Determine w.
(ii) A fuel should produce work when used in car engine. Which fuel, propane or natural gas, works better in a car engine? Give reasons.
7. a. A refrigerator is a heat engine in reverse.

(i) Is work produced or supplied?
(ii) What part of the refrigerator is the cold reservoir?
(iii) How is work converted into heat?
b. A schematic diagram of a refrigerator is shown below.

Low P liquid
HighP liquid
(i) Determine q and w for each step.
(ii) Which step cools air inside the refrigerator?
(iii) Would you want the refrigerant to have a high boiling point or low boiling point? Give reasons.
(iv) Would you want the refrigerant to be compressible or incompressible? Give reasons.

