Objective 9

Energy and heat 2: predict heat in a chemical reaction and chemical heat transfer.
Apply using Hess' law.
Predict work in a chemical reaction.

http://
www.celebritysentry.com/ post/cheltenham-gold-cup-horse-race/

A rock and gold cup lie in the middle of the parking lot on a hot day. Which substance contains more heat?

Atoms and Molecules Contain Energy

Internal Energy (E) is the Energy Inside Atoms and Molecules; property of a substance (state function)

Enthalpy (H) is that part of the internal energy that is converted into heat:

$$
q=\Delta H
$$

$$
\begin{array}{ll}
\Delta \mathrm{H}>0 & \text { endothermic }- \text { heat absorbed/supplied } \\
\Delta \mathrm{H}<0 & \underline{\text { exothermic }- \text { heat released/given off }}
\end{array}
$$

Heat (q) is the energy transferred due to ΔT
Heat is NOT a property of a substance (path function)

Heat is the Energy TRANSFERRED between 2 objects due to a difference in TEMPERATURE.

Hot object: atoms move fast Higher Internal Energy

Cold object: atoms move slow Lower Internal Energy

Energy transferred (HEAT) when fast atoms collides with a slow ones. Fast atoms move slower ($\mathrm{T} \downarrow$); slow atoms move faster ($\mathrm{T} \boldsymbol{\uparrow}$).
Internal Energy decreases for Hot object and increases for Cold object.

Two Driving Forces determine whether a chemical reaction occurs: Enthalpy and Entropy

Entropy (S) refers to the dispersal of energy

Nature: \quad Things want to be at low energy.
It takes energy to keep things ordered.

Entropy: What happens when you can't hold back the door?

http://www.secondgearsports.com/blog

Every Chemical Reaction Involves Energy

Exothermic Reaction

heat is released

http://candlefind.com/candle-reviews/avery-
jordan-candle-reviews/friendly-fumes-scentedcandles.html

http://www.bpmedicalsupplies.com/ category.sc?categoryld=40

Endothermic Reaction
 heat is absorbed

How Much Energy Is Involved In A Chemical Reaction? (Heat)

Look up $\Delta \mathrm{H}$ of formation data:
Chemistry textbook Appendix http://www.wiredchemist.com/chemistry/chemistry.html

Calculate ΔH of a chemical reaction from ΔH of formation using HESS' LAW
$\Delta \mathrm{H}_{\text {reaction }}=\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}$ (products) $-\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}$ (reactants) where $\mathrm{n}=$ coefficient in balanced chemical equation

$$
\begin{array}{ll}
\Delta \mathrm{H}>0 & \text { endothermic }- \text { heat absorbed/supplied } \\
\Delta \mathrm{H}<0 & \text { exothermic }- \text { heat released/given off }
\end{array}
$$

Most chemical reactions are exothermic.

Formation Reaction:

Element(s) in standard state --> compound
When an element is formed, Energy gained or lost $=0$ $\Delta \mathrm{H}$ of formation of an element in std state $=0$

Compounds are usually more stable than the elements it comes from. (Compounds have a lower E than elements.)

Energy is usually lost (released) when a compound is formed from its elements ($\Delta \mathrm{H}$ of formation of a compound <0)

Stable means Low Energy.
Unstable means High Energy.

Objective: relate $\Delta \mathrm{H}$ to stability

Write a chemical equation for the formation of $\mathrm{H}_{2} \mathrm{O}$.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Calculate (or look up) $\Delta \mathrm{H}$ of formation of:
O_{2} (g)
$\mathrm{H}_{2} \mathrm{O}$ (I)
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

http://www.health.gov.ws/
AboutUs/Divisions/HPPSD/
EnvironmentalHealth/
WaterSection/tabid/5437/
language/en-US/
Default.aspx

Which substance has the most energy?
Which substance is the most stable?
Draw an energy diagram with $\mathrm{H}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$.

Formation of water: $\mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})-->\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

How Much Energy (Heat) Is Involved When Water Forms?

use Hess' law to calculate $\Delta \mathrm{H}_{\text {reaction }}$
$\Delta \mathrm{H}_{\text {reaction }}=\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}$ (products) $-\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}$ (reactants)

Calculate $\Delta \mathrm{H}$ for

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

a. $-285 \mathrm{~kJ} / \mathrm{mole}$
b. $-570 \mathrm{~kJ} / \mathrm{mole}$
c. $0 \mathrm{~kJ} / \mathrm{mole}$

Calculate $\Delta \mathrm{H}$ for

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

First, ballance the equation:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{kJ} /$ mole
$0 \quad 0 \quad-285$
Apply Hess' law:

$$
\begin{aligned}
\Delta \mathrm{H}_{\text {reaction }} & =\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}(\text { products })-\Sigma \mathrm{n} \Delta \mathrm{H}_{\text {formation }}(\text { reactants }) \\
& =\left[2 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)\right]-\left[2 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2}(\mathrm{~g})\right)+1 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right] \\
& =[(2)(-285)]-[(2)(0)+(1)(0)]
\end{aligned}
$$

When 2 moles of water (I) are formed, 570 kJ is released.
When 1 mole of water (I) is formed, \qquad kJ is released.

Formation of $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})-->\mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{I})$

Formation of Metal lons: $\mathbf{M}(\mathrm{s})-->\mathbf{M}^{+}(\mathrm{aq})+\mathrm{e}^{-}$

Activity of Metals: Why does Fe rust and Cu does not?

Hydrogen is the fuel of the 21st century

What type of reaction occurs when H_{2} is used as a fuel?
Write a chemical equation that represents this reaction.
Is energy absorbed or released in this reaction?

Chem 1A Reactions: predict products

1. Double replacement

Precipitation
Acid-base
Gas forming
2. Single replacement

Oxidation-reduction
3. Combustion

Fuel reacts with oxygen. Energy is produced.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+$ energy
carbon based (fossil) fuel $+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+$ energy

Lab 7. Natural Gas is Used in Bunsen Burners

What is natural gas? Write a chemical equation that represents the combustion of natural gas.
The color of the flame tells you which reactant is the limiting reactant.

http://fineartamerica.com/featured/2-bunsen-burner-flame-.html

http://www.instructables.com/id/Bernoullis-Principle/step12/ Practical-Applications-Bunsen-Burner/

How do you adjust the amount of reactant that reacts in a Bunsen burner?

Use these Heat Equations in calculations:

Heat gained by cold object $=$ - Heat lost by hot object
For physical heat transfer: $q=m s \Delta T$
For chemical heat transfer: $q=\Delta H$
ΔH for a chemical reaction: Hess' law

Look up $\Delta \mathrm{H}_{\text {formation }}$ in Appendix.

Lab 7. Alcohol Is Used As A Fuel

Bring an empty 0.5 liter plastic water or soda bottle to lab.

How much energy is produced when 1 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns?

Lab 7. Alcohol Is Used As A Fuel

a. 1 g of alcohol is burned to heat up water. Calculate the volume of water that can be heated from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ when 1 g of alcohol burns.
b. You want to heat up 1 liter of water from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Calculate the mass of alcohol that will heat up the water.

1. a. Is heat absorbed or released when water vaporizes to steam?
b. Is heat absorbed or released when steam condenses to water?
c. Is the same amount of heat involved in each phase change?
d. Calculate $\Delta \mathrm{H}$ of reaction of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
e. When steam condenses, what is $\Delta \mathrm{H}$?
2. You are really hot. You pour 1 liter of water on your head to cool off. Calculate the heat loss from your body.
s of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
s of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

http://guysandgoodhealth.com/2012/06/28/what-to-
do-if-you-get-overheated/

McDonald' s was sued by a customer who claimed she was very badly burned when she spilled a hot cup of coffee on herself.

See Practice Problem 2

a. 1 cup of water is heated from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Calculate heat.
b. 1 cup of water at $25^{\circ} \mathrm{C}$ is boiled. Calculate heat.
c. Explain why being burned by steam is much worse than being burned by hot water.

A Chemical Reaction Releases/Absorbs Heat in a Hot/Cold Pack

$\frac{\text { http://www.bcfirstaidcourses.com/sfa/ }}{\underline{\text { home.php?cat=372 }}}$

Can NaCl be used in a hot pack or cold pack?
If a hot pack, how much NaCl is used to heat 50 ml of water from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
If a cold pack, how much NaCl is used to cool 50 ml of water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$?

Can NaCl be used in a hot pack or cold pack? Cold pack
If a cold pack, how much NaCl is used to cool 50 ml of water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$?

1. Chemical Equation: $\mathrm{NaCl}(\mathrm{s})-->\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
2. Calculate ΔH of reaction using Hess' law: $\Delta H=4.14 \mathrm{~kJ} /$ mole
3. Use sign of ΔH to determine use in hot or cold pack. $\Delta \mathrm{H}>0==>$ cold pack, $\Delta \mathrm{H}<0==>$ hot pack
4. Use heat gained by \qquad = -heat lost by
$\Delta \mathrm{H}$ of NaCl dissolution >0 (endo) $==>$ cold pack heat gained by NaCl chem rxn $=-$ heat lost by water
$\Delta H \times$ moles of $\mathrm{NaCl}=-\mathrm{m}_{\mathrm{w}} \mathrm{S}_{\mathrm{w}}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$
Solve for moles of $\mathrm{NaCl}==>$ convert to g of NaCl .
5. Check solubility of NaCl in water.

Lab 7 Make a HOT/COLD Pack from ionic compounds: $\mathrm{LiCl}, \mathrm{KCl}, \mathrm{CaCl}_{2}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{KNO}_{3}, \mathrm{NaNO}_{3}, \mathrm{MgSO}_{4}, \mathrm{CaSO}_{4}$

- For each salt, calculate $\Delta \mathrm{H}$ of dissolution.
- Is the salt used in a hot pack or cold pack?
- Calculate mass of salt to use for hot/cold pack.
- Calculate cost of hot/cold pack.
- Determine safety. See NFPA Rating or Saf-T Rating.
- Choose 2 salts each for hot/cold pack based on cost and safety.
- Test performance: Does hot pack T rise to $40^{\circ} \mathrm{C}$ and stay there for 10 min ? Does cold pack T drop to $0^{\circ} \mathrm{C}$ and stay there for 10 min ?
- Choose one salt for hot/cold pack based on cost, safety, and performance.

Objective: know how a heat engine works

What is the source of gas in a car engine? What causes the gas to expand?

What happens in the hot reservoir? How is heat converted to work?
Is all of the heat converted into work?

Efficiency = output/input.
What is the efficiency of a heat engine? Relate q to w.

Heat Engines Produce Heat in a Combustion Reaction

Cars run on gasoline. The major component of gasoline is octane, $\mathrm{C}_{8} \mathrm{H}_{18}$.
What is the heat of combustion of octane in $\mathrm{kJ} /$ mole?
What is the heat of combustion of octane in kJ / g ?
Some cars run on Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
What is the heat of combustion of ethanol in $\mathrm{kJ} / \mathrm{mole}$?
What is the heat of combustion of ethanol in kJ / g ?
Some cars run on natural gas, CH_{4} (methane).
What is the heat of combustion of methane in $\mathrm{kJ} / \mathrm{mole}$?
What is the heat of combustion of methane in kJ / g ?
Which fuel stores the most energy?

Table. Fuel Comparison

Fuel	Formula	Molar Mass	$\Delta \mathrm{H}$, $\mathrm{kJ} /$ mole	$\Delta \mathrm{H}$, kJ / g
Methane	CH_{4}	16	-802	-50.1
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46	-1234	-26.8
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114	-5074	-44.5

Heat Engines Produce Work from Heat

Work is the Ability to Move Matter
Physics: w=f•d
Chemistry: $\quad w=-p \Delta V$
Work involves Gases

Gas Expands ==> $\Delta V>0==>\mathrm{w}<0$

Work Produced
Work Done by Gas

Example: gas expands in explosion Gas Expands in car Engine ==> Work Produced

Gas Contracts $==>\Delta \mathrm{V}<0==>\mathrm{w}>0 \quad$ Work Supplied
Example: gas contracts in compressor

Objective: Calculate Work in a Chemical Reaction e.g., butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ combustion
a. Write chemical equation.

$$
1 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

b. Compare moles of gas reactants to gas products. 7.5 moles of gas reactants

9 moles gas products
c. Is $\Delta \mathrm{n}>0,<0$, or $=0$?

$$
\Delta \mathrm{n}=\mathrm{n}_{\mathrm{f}}-\mathrm{n}_{\mathrm{i}}=9-7.5=1.5 \text { moles }
$$

If $\Delta \mathrm{n}>0$, then $\Delta \mathrm{V}>0 \quad \therefore \mathrm{w}$ is <0 (work is produced)
If $\Delta n<0$, then ΔV is \qquad $\therefore \mathrm{w}$ is \qquad (work is \qquad
Butane combustion reaction Produces Work!

Octane is the major component of gasoline. Hydrogen is the fuel of the 21st century.
(i) Is work produced in the octane combustion reaction?
(ii) Is work produced in the hydrogen combustion reaction?
(iii) Which fuel is better for a car engine?

http://atom.smasher.org/gas-station/

http://www.instructables.com/id/Separate-Hydrogen-and-
Oxygen-from-Water-Through-El/

Fossil Fuels are Burned For Energy WE Use A Lot Of Fossil Fuels

Gasoline for our cars: octane number

- 2007: World oil demand = 85 million barrels/day
- US oil demand = 20 million barrels/day, approximately 10 million barrels/day for gasoline 141 billion gallons gas/year
- SJ Mercury News, 11/9/07: 32 million registered cars in CA.
- California = 16 billion gallons gas/year

Fossil Fuels are Burned For Energy WE Use A Lot Of Fossil Fuels

Engine Friction consumes 10\% of a car's or truck's fuel:
≈ 1.4 million barrels of oil wasted per day in U.S.
$\approx \$ 31$ billion worth of petroleum lost in automobile engines every year (at \$60 per bbl).

Reduce friction losses ==> significant savings in fuel consumption

Tribology: study of friction (in mechanical engineering field)
http://cen.acs.org/articles/88/i41/Fighting-Friction.html

What is in the Cost of a Gallon of Gasoline?

http://atom.smasher.org/gas-station/

2/3 to crude oil suppliers
12% to refining costs (crude oil processing, oxygenate additives, product shipment, storage, brand advertising) and profits

9\% to distribution, marketing, and retail costs (franchise fees, rents, wages, environmental fees, credit cards fees, insurance costs, billboard, TV, and newspaper ads)
12% to taxes (federal and state)
http://www.marketplace.org/topics/world/numbers/will-instability-iraq-flow-pump

Objective: do a chemical calculation
Calculate how much CO_{2} goes in the atmosphere from cars.
Fossil Fuels Produce $\mathrm{CO}_{2}==>$ Global Warming
Calculate the mass of CO_{2} produced when 1 gallon of octane burns.

$$
352 \mathrm{~g} \quad 1031 \mathrm{~g} \quad 8250 \mathrm{~g} \quad 10 \mathrm{~kg}
$$

Estimate the mass of CO_{2} that goes into the Earth's atmosphere per day from cars.

Smog Check Vehicle Inspection Report (VIR)

Test Date: 12/21/05 1988 Honda Prelude

Idle Emission Test Results

Test	RPM	CO_{2} MEAS 2 $\%$	O_{2} MEAS ,$\%$	HC MAX ppm	HC AVE,p pm	HC MEAS ppm	CO MAX, $\%$	CO AVE, $\%$	CO MEAS $\%$	Results
Idle	738	14.50	0.40	120	29	96	1.00	0.10	0.18	$?$
2500 RPM	2264	14.50	0.30	140	20	24	1.00	0.10	0.30	$?$

Did this vehicle pass the Smog Check?
YES
NO

2006: 24 billion metric tons of annual anthropogenic

 CO_{2} emissions (CEN, 4/30007, p. 11)
What Can We Do With Carbon Dioxide?

Convert CO_{2} into fuels and other value-added products:
$\mathrm{CO}_{2}+$ urea ----> nitrogen fertilizers
$\mathrm{CO}_{2}+$ salicylic acid as a pharmaceutical ingredient polycarbonate-based plastics
Solvent: supercritical CO_{2} (the state existing at $31.0^{\circ} \mathrm{C}$ and 72.8 atm) offers advantages in terms of stereochemical control, product purification, and environmental issues for synthesizing fine chemicals and pharmaceuticals
CO_{2} can be sequestered by:
Trees $=1$ tree absorbs 26 lb of CO_{2} per year (CEN, 8/27/07, p. 3 Letter)
Underground Storage (CEN, 9/24/07, p. 74)

C\&EN, 6/2/14, p. 5 (http://cen.acs.org/articles/92/iz2/Waste-Gases-Power-Chemical-Start.htmI) Start-ups Use Waste CO_{2} to Make Chemicals

Skyonic (Austin, TX): $\mathrm{CO}_{2} \rightarrow \mathrm{HCl}$ and CaCO_{3}

Liquid Light (NJ): $\mathrm{CO}_{2} \rightarrow$ ethylene glycol Newlight Technologies (CA): CO_{2} and $\mathrm{CH}_{4} \rightarrow$ polymers

A Liquid Light employee assembles an electrocatalytic cell that makes ethylene glycol from CO_{2}.

A Combustion Reaction Occurs Inside Us

We use Fuel to provide energy for our body.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

We exhale greenhouse gases.
How much energy is produced when 1 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ burns?

http://knowyourmeme.com/

memes/events/burning-man

Corn use in U.S.:

1/3 to feed livestock

13\% exported (most to feed livestock) 40\% to produce ethanol Rest for food and beverages
http://www.mealsonwheelswest.org/the-
nutritional-value-of-corn/

Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is a fuel used in sternos and is used as a fuel additive (see Flex fuels).
a. When ethanol burns, is work produced? Give reasons.
b. 2 g of ethanol is burned to heat up 2 cups of water at $25^{\circ} \mathrm{C}$.

Calculate the final temperature of the water.

MAKING CELLULOSIC BIOFUELS

SOURCES: Energy Information Administration, company information

NOTEt Estimates are for undiscovered technically recoverable oil and gas in 2003. OCS = ouber continental shelf. blbl - barrels. SOURCE: Minerals Management Strvice

CEN, October 3, 2005, pp. 31-34 Rethinking Energy Policy

Hydraulic Fracturing (Fracking) pumps millions of gallons of treated water and sand into the ground at extremely high pressure to generate fractures or cracks in shale rocks to release natural gas.

Year	\% of U.S. natural gas from shale rock
2000	1
2010	20
2035	50

"Most significant energy innovation of this century"

U.S. now has about 2,074 trillion cu ft of technically recoverable natural gas resources-enough to meet domestic demand for more than a century at the current rate of consumption.
http://cen.acs.org/articles/88/i22/Drilling-Process-Draws-Scrutiny.html

Water is $98-99 \%$ of fracking fluid.

CHEM Hydraulic employs	ICAL COCKTAIL racturing for natural gas numerous compounds
COMPOUND	PURPOSE
Acids	Help dissolve minerals and initiate fissure in rock
Ammonium bisulfite	Removes oxygen from water to protect pipes from corrosion
Borate salts	Maintain fluid viscosity as temperature increases
Citric acid	Prevents precipitation of metal oxides
N,N-Dimethyl formamide	Prevents pipe corrosion
Ethylene glycol	Prevents scale deposits in pipes
Glutaraldehyde	Eliminates bacteria in water
Guar gum	Thickens water to suspend sand
Isopropyl alcohol	Increases the viscosity of fracture fluids
Petroleum distillates	Slick water to minimize friction
Polyacrylamide	Minimizes friction between fluid and pipe
Potassium chloride	Creates a brine carrier fluid
Sodium chloride	Allows a delayed breakdown of gel polymer chains
NOTE: Companies use proprietary mixes of chemical additives that include a subset of those listed. SOURCE: Energy In Depth	

http://cen.acs.org/articles/87/i33/Drilling-Chemicals.htmI http://cen.acs.org/articles/88/i22/Geochemistry-Hydraulic-Fracturing-Fluid-Chemical.html

http://cen.acs.org/articles/90/i16/Methane-New-FrackingFiasco.html

4/16/12, CEN, p. 34 "Methane: A New 'Fracking' Fiasco"
The flood of natural gas production is hoped to slow climate change, but it might just make it worse

Oil and gas production is the largest source of man-made methane emissions. 1st 12 years in the atmosphere, methane is 72 times more potent a greenhouse gas than CO_{2}.
1st 100 years in the atmosphere, methane is 21 times more potent a greenhouse gas than CO_{2}. (Source: the Intergovernmental Panel on Climate Change)
But CO_{2} makes up 82% of annual U.S. anthropogenic greenhouse gas emissions, and CH_{4} makes up 9\%. (Source: Energy Information Administration (EIA))

Natural Gas (fossil fuel) is used for heating and cooking
1 therm = 100,000 Btu = 105.4804 MJ
PG\&E rate $=\$ 1.10 /$ therm

Calculate the mass of methane burned to produce 1 therm. (Hint: $\Delta \mathrm{H}_{\text {combustion }}$ of $\mathrm{CH}_{4}=-802 \mathrm{~kJ} / \mathrm{mole}$)
$1 \mathrm{~g} \quad 1000 \mathrm{~g} \quad 2000 \mathrm{~g}$

Electricity is Used for heating and cooking, lights, etc. $1 \mathrm{~kW} \mathrm{hr}=3.6 \times 10^{6} \mathrm{~J}=3.6 \mathrm{MJ}=0.034$ therm PG\&E rate $=\$ 0.165 / \mathrm{kW} \mathrm{hr}$

Is Electricity cheaper than Natural Gas?

Methane, CH_{4}, is the fuel in natural gas. a. Calculate the heat of combustion of methane.
b. Is work produced in the methane combustion reaction?
c. 1 g of methane burns to heat up 1 cup of water at $25^{\circ} \mathrm{C}$. Calculate the final temperature of the water.

$$
\mathrm{T}_{\mathrm{f}}=50^{\circ} \mathrm{C} \quad 75^{\circ} \mathrm{C}
$$

http://www.diylife.com/2008/06/03/ troubleshoot-your-stove/
$100^{\circ} \mathrm{C}$

Strategy:

a. Write chemical equation. Apply Hess' law
b. Compare moles of gas reactants to gas products. Is $\Delta n>0$,
<0, or $=0$?
If $\Delta \mathrm{n}>0$, then $\Delta \mathrm{V}>0 \quad \therefore \mathrm{w}$ is <0 (work is produced)
If $\Delta \mathrm{n}<0$, then $\Delta \mathrm{V}$ is ___ $\therefore \mathrm{w}$ is \qquad (work is \qquad
c. Use heat equations

Where does electricity come from?

$3.95 \times 10^{12} \mathrm{~kW} \mathrm{hr} \quad 45 \%$ Coal 23% Natural gas 20\% Nuclear $\quad 7 \%$ Hydroelectric $<2 \%$ Solar/wind

Reference: http://www.eia.gov/totalenergy/data/annual/index.cfm -2009
Where does the electricity come from for an electric car?

\square Coal
\square Natural Gas
\square Nuclear
\square Hydroelectric
\square Solar/Wind

Where does Electricity Come From?

UPSTART China is ramping up alternative energy in addition to coal				
ELECTRICITY GENERATION CAPACITY, GIGAWATTS	2007	2015	2020	2035
U.S.				
All types	995	1069	1.082	1,216
Coal-fired	313	325	326	337
Wind	16	6.4	64	69
Solar	1	1	1	1
CHINA				
All types	716	1.021	1.242	1.924
Coal-fired	496	625	750	1.233
Wind	6	39	63	130
Solar	0	4	6	6
WORLD				
All types	4.428	5.005	5.470	2009
Coal-fired	1.425	1.545	1.671	2.366
Wind	93	277	347	486
Solar	8	45	53	64
SOURCE: DOE, International Energy Outlock 2010				

http://cen.acs.org/articles/88/i40/Chemistry-Energizes-China.html

Electricity generated with natural gas (from fracking) is expected to grow at coal' s expense.
NOTE: Actual data for 1990-2010, estimates for 2011-35.
SOURCE: EIA, "AEO2012 Early Release Overview"

Confirm or Refute:

"Natural gas emits about half the amount of CO_{2} than coal for the same amount of energy produced."

Confirm or Refute:

"Natural gas emits about half the amount of CO_{2} than coal for the same amount of energy produced."

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+802 \mathrm{~kJ} / \mathrm{mole} \\
& \mathrm{C}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Currently, on a global scale, energy usage is on the order of 13 terawatts (13 trillion W or 13 trillion joules per second), of which roughly 85% is generated by burning fossill fuels. (CEN, 8/27/07, p. 16)
"MORE ENERGY-in the form of sunlight—strikes Earth in one hour than all of the energy consumed by humans in an entire year." -- Nathan Lewis, Cal Tech Chemistry Professor

Sun showers Earth with an energy flow of some 120,000 TW.
We need to Figure out a way to inexpensively convert sunlight to electricity.

Solar Energy $\approx 0.125 \%$ of U.S. electricity (2008) CEN, 10/20/08, p. 40
920 MW on Electric Grid = 500 MW photovoltaics +420 MW concentrating solar power
2260 MW captured solar from solar calculators, road signs, pools,

Polysilicon solar cells 14\% efficiency
http://www.topsky-tech.com/poly-silicon-solar-cell-tianwei-supplier.html

Thin Films
8\% efficiency
http://www.circuitstoday.com/thin-film-solar-cell

Learn Where Your Energy Is Going.

How Much Does it Cost?

An important part of keeping your energy bills down is knowing what it costs to run your appliances. Here are the most-used appliances, and the average cost to run each. Costs are based on projected average 1998 residential rates of about 13 cents per kilowatthour of electricity and 64 cents per therm of gas.

Source: PG\&E

Estimated U.S. Energy Use in 2013: ~97.4 Quads

Lawrence Livermore
National Laboratory

Source: LLNL 2014. Data is based on DOE/EIA-0035(2014-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Washing Clothes in Cold Water vs. Using Clothes Dryer Which uses less energy?

http://cen.acs.org/articles/89/i44/Cold-Facts.html

2011: 40% of U.S. laundry is washed in cold water.
4\% of the energy consumed in the U.S. would be saved if all laundering were done in cold water (P\&G calculation).
If everybody in the U.S. turned their washing machine dials from hot to warm and from warm to cold, reduce CO_{2} by 16 million and 20 million tons per year.

81% of the electricity used to do laundry is consumed by the dryer

How to use the dryer less?

http://www.clotheslineshop.com/
Merchant2/merchant.mvc?

Maximize water removal during the washing machine's spin cycle to reduce the amount of time clothes must spend in the dryer.

Objective: know how a refrigerator works A Refrigerator is a Heat Engine in Reverse

Is work produced or supplied?
What part of the refrigerator is the cold reservoir?
How is work converted into heat?

How Does a Refrigerator Work? http:/home.howstuffworks.com/refigigerator3.htm

a. Determine q and w for each step.
b. Which step cools air inside the refrigerator?
c. Would you want the refrigerant to have a high boiling point or low boiling point? Give reasons.
d. Would you want the refrigerant to be compressible or incompressible? Give reasons.

1st Law of Thermodynamics states:
 "Energy is converted from one form to another" "Energy can't be created or destroyed" "Energy is conserved"

$$
\Delta E=q+w
$$

Internal energy (E) can be converted into heat (q) or work (w) or both.

Internal energy (E) is a state (thermodynamic) function property of a substance - contained in substances.

Heat and work are path (non-thermodynamic) functions - not a property of a substance - not contained in substances.

$$
q=m s \Delta T \quad-\quad w=-p \Delta V
$$

When air is pumped into a bicycle tire, a warming effect at the valve stem occurs. The action of the pump compresses the air inside the pump and the tire. The process is rapid enough to be treated as an adiabatic process.

Apply the first law of thermodynamics to account for the warming effect. (Chang, "General Chemistry: The Essential Concepts", 5th ed., 2008, p. 208, Problem 6.104 a and b.)

http://bikeacrossamerica.net/tour/11/ safford-to-lordsburg.htm

Apply the first law of thermodynamics to explain how a snow making machine works. (Chang, "General Chemistry: The Essential Concepts", 6th ed., 2011, Problem 6.104 a.)

