Objective 8

Energy and heat 1:

 predict heat in a physical heat transfer. Apply heat equations ($q=m \mathrm{~s} \Delta \mathrm{~T}$, heat gained $=$ heat lost)
Energy and Heat

How long will it take to heat up my water?

What kind of pot
should I use?
What fuel should I use?
http://survival-mastery.com/skills/water-purifying/
survival-water-purification.html

Energy is the Ability to do Work. Heat is a type of Energy
Shake hands with your neighbor.

Is heat transferred?
Give reasons.

Heat is the Energy TRANSFERRED between 2 objects due to a difference in TEMPERATURE.

Hot object: atoms move fast

Cold object: atoms move slow

What happens when a fast atom collides with a slow one?

Objective: ID factors that determine heat
Heat is the Energy transferred between 2 objects due to a difference in temperature.

1 cup of water is heated from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

2 cups of water is heated from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Is the same amount of heat needed to heat each amount of water?

Objective: ID factors that determine heat

250 g of water is heated from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

250 g of ethanol is heated from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

Is the same amount of heat needed to heat each amount of liquid?

pour

50 ml of water at $25^{\circ} \mathrm{C}$
50 ml of water at $100^{\circ} \mathrm{C}$ What is the final temperature of the water?

25 ml of water at $25^{\circ} \mathrm{C}$

75 ml of water at $100^{\circ} \mathrm{C}$ Is the final temperature of the water the same as above?

Heat is the Transfer of energy from one object to another due to a Difference In Temperature.

3 Factors determine heat transferred:

- Mass - amount of substance
- Temperature - average KE of a substance
- Specific Heat - amount of E required to raise 1 g of a substance $1^{\circ} \mathrm{C}$. (see specific heat table in textbook)

Heat $=q=m s \Delta T$

Do conductors have a high specific heat or low specific heat?
3 types of heat transfer: Conduction, Convection, Radiation

http://www.dreamstime.com/stock-photography-hand-reaching-downimage8307552
http://candlefind.com/candle-reviews/avery-jordan-candle-reviews/friendly-fumes-scentedcandles.html

Hot Object Touches a Cold Object:

Heat gained by cold object $\boldsymbol{=} \boldsymbol{-}$ Heat lost by hot object

heat gained is $(+)$ heat $=$ endothermic heat lost is (-) heat = exothermic

What is gaining heat? What is losing heat?

Objective: Use the Heat Equations to Calculate q

Problem: 1 cup (240 ml) of $\mathrm{H}_{2} \mathrm{O}$ is heated from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Calculate q.

A typical hot water heater holds 30 gallons of water. The normal temperature setting is 120° F. Calculate the heat needed to raise the T of 30 gallons of water from room temperature to $120^{\circ} \mathrm{F}$.

Objective: Use the Heat Equations to Calculate q

Problem: 1 cup (240 ml) of $\mathrm{H}_{2} \mathrm{O}$ is heated from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Calculate q.

Solution: $\quad q=65,210 \mathrm{~J}$
Heat $=m s\left(T_{f}-T_{i}\right)$

$$
\mathrm{q}=(240 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(90^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)
$$

How much heat is needed to heat 2 cups of $\mathrm{H}_{2} \mathrm{O}$ from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?

How much heat is needed to heat 240 g of ethanol from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$?

Objective: Use the Heat Equations to Calculate T_{f}

Problem: $50 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$ is added to $50 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. Calculate the final temperature of the water.

Objective: Use the Heat Equations to Calculate T_{f}

Problem: $50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$ is added to 50 ml H O at $25^{\circ} \mathrm{C}$. Calculate the final temperature of the water.

Solution: $\quad \mathrm{T}_{\mathrm{f}}=\mathbf{6 2 . 5}{ }^{\circ} \mathrm{C}$
Heat gained by cold water $=-$ Heat lost by hot water

$$
\mathrm{m}_{\mathrm{c}} \mathrm{~s}_{\mathrm{c}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{ic}}\right) \quad=-\mathrm{m}_{\mathrm{h}} \mathrm{~s}_{\mathrm{h}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{ih}}\right)
$$

What is gaining heat? What is losing heat?
7 variables in the heat equation. Know 6 and solve for 1.
Which variables do you know? Which variable do you solve for?

Objective: Use Heat Equations to Measure Specific Heat (Lab 7)

Problem: A 53.1 g piece of metal at $100^{\circ} \mathrm{C}$ is added to 50 ml $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The final temperature is $32.4^{\circ} \mathrm{C}$. Calculate the specific heat of the metal. What is the identity of this metal?

Lab 7: Use Heat Equations to Measure Specific Heat

Problem: A 53.1 g piece of metal at $100^{\circ} \mathrm{C}$ is added to 50 ml $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The final temperature is $32.4^{\circ} \mathrm{C}$. Calculate the specific heat of the metal. What is the identity of this metal?

Solution: $\quad s=0.43 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Heat gained by cold object $=-$ Heat lost by hot object

$$
m_{c} s_{c}\left(T_{f}-T_{i c}\right) \quad=-m_{h} s_{h}\left(T_{f}-T_{i h}\right)
$$

What is gaining heat? What is losing heat?
7 variables in the heat equation. Know 6 and solve for 1. Which variables do you know? Which variable do you solve for?

Design an experiment to measure specific heat.

A typical hot water heater holds 40 gallons of water. The normal temperature setting is $120^{\circ} \mathrm{F}$.
Calculate the heat needed to raise the T of 40 gallons of water from $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ to $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$.

When natural gas burns (combusts), it produces $802 \mathrm{~kJ} / \mathrm{mole}=$ $50.1 \mathrm{~kJ} / \mathrm{g}$.
How many g of natural gas is needed to heat 40 gallons of water from $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ to $120^{\circ} \mathrm{F}\left(49{ }^{\circ} \mathrm{C}\right)$?

A typical hot water heater holds 40 gallons of water. The normal temperature setting is $120^{\circ} \mathrm{F}$.

PG\&E charges \$1.10/therm for natural gas (methane $=\mathrm{CH}_{4}$). 1 therm = 105.4804 MJ
How much does it cost to heat 40 gallons of water from $70^{\circ} \mathrm{F}$ $\left(21^{\circ} \mathrm{C}\right)$ to $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$ using natural gas?

PG\&E charges $\$ 0.165 / \mathrm{kW}$ hr for electricity. $1 \mathrm{~kW} \mathrm{hr}=3.6 \mathrm{MJ}$
How much does it cost to heat 40 gallons of water from $70^{\circ} \mathrm{F}$ $\left(21^{\circ} \mathrm{C}\right)$ to $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$ using electricity?

Which source is cheaper to heat water?

How to Keep your Coffee Hot?

http://www.clipartguide.com/ pages/1552-0906-3020-1509.html
Does it depend on the cup the coffee is in? Does it stay hot longer in a metal cup or styrofoam cup? Why?

If you want to keep your beverage hot, should you pre-heat the cup? Why?

If you want to keep you beverage cold, should you chill the cup? Why?

If you want to keep your food warm, should you preheat your plate? Why?

What Does Water Have To Do With It?
 Hint: see specific heat
 Water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ Sand $=0.8 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Cooler near a body of water

http://www.fondriest.com/environmental-measurements/ parameters/water-quality/water-temperaturel

http://www.how-to-draw-cartoons-
online.com/image-files/cartoon-desert.gif

Hotter where

 there's no water