Objective 15: Develop synthesis strategies for organic synthesis. **Quiz Practice problems**

Key ideas:

You've been doing organic synthesis in organic lab this semester.

Organic synthesis strategies include:

- converting one functional group to another,
- moving a functional group from one carbon to an adjacent carbon,
- making a carbon-carbon bond to make a bigger molecule, and
- making a compound with two or more functional groups.

You want to identify the Reaction Type to accomplish your desired synthesis. Structural features help you figure out the reaction type. Identifying the structural feature as a nucleophile or electrophile tells you how the reaction occurs.

Structural features:

C=C pi bond (including conjugated diene and aromatic)

C-O, C-X, C-N compounds: alpha carbon, leaving group (HOH, ROH, NH₃, X⁻), H bonded to beta carbon

Table	1 S	unthesis	Strategies	Summarv
Iable	1.0	ynuicaia	Suacyes	Summary

Structure Change	Reaction Type	Structural Features	What Happens
Make an acid or base	Proton transfer	Acid and base. See pKa table.	H ⁺ (only) is transferred from
			acid to base.
Make a better Leaving Group	Proton transfer	LG and Acid. See pKa table.	H ⁺ (only) is transferred from
(LG)			acid to base.
Make a C=C pi bond	Elimination	H bonded to beta C (or	Nu: ⁻ reacts at H, pi bond
		carbocation), LG, and Nu: ⁻ .	forms, LG leaves
Add atoms or groups to each	Electrophilic Addition	C=C pi bond Nu: reacts with E^+ .	Atoms or group add to each
atom in a pi bond			vinylic C.
Convert or exchange one	Nucleophilic	alpha carbon, LG, and Nu: ⁻ .	Leaving group exchanges
functional group for another	Substitution		with another atom or group
at one carbon			at alpha C.

Table 2. Nucleophiles and Electrophiles by Atom Type

Atom Type	Nucleophile	Electrophile
hydrogen	Acid (H^{\dagger} , RCOOH, ROH, etc.) See pK _a table.	Hydride (H ⁻), H bonded to beta carbon
carbon	CN ⁻ , acetylide	Carbocation, alpha carbon on LG
nitrogen	Lone pair N: NH ₃ , NH ₂ ⁻ , NRH ₂ , NRH ⁻	NH4 ⁺ , NH3,
oxygen	Lone pair O: H_2O , OH^- , ROH, RO^- , ROR, $RCOO^-$,	H_2O , H_3O^+ , ROH, ROH_2^+ , $ROHR^+$,
X (CI, Br, I)	X	X ₂
Bond	C=C pi bond, CEC bond pi bond	

Many organic reactions are reversible.

Table 3. Reversible Reaction Types

Forward Reaction	Example:	Reverse Reaction
Acid-Base	$ROH + H^{+} - ROH_{2}^{+}$	Base-Acid
Substitution	ROH + HBr> RBr	Substitution
Addition	ethylene + HBr> ethyl bromide	Elimination
Oxidation	1° ROH> RCHO or RCOOH	Reduction

Example: ethanol reacts in several ways:

Substitution with HBr to form ethyl bromide. (Or substitution with RX to form ether.)

Elimination to form ethylene.

Oxidation to form acetic acid (CHM 12B reaction).

This means there are at least three ways to synthesize ethanol. In other words, look at ethanol reactions in reverse or backwards.

Skills:

Given target compound and starting materials, identify structural features.

Given target compound and starting materials, identify functional groups.

Given target compound and starting materials, identify bonds that break and form.

Given target compound and starting materials, design a synthesis to

- convert one functional group to another,
- move a functional group from one carbon to an adjacent carbon,

- make a carbon-carbon bond to make a bigger molecule, and
- make a compound with two or more functional groups.

1. Convert one functional group to another.

a. See Table 1. Use a substitution reaction. You need a _____ and _____ for a substitution reaction. Use your pKa table.

Describe a one or two step synthesis of the target compound from the starting material. (In other words, Determine the reaction conditions for each reaction.) Use reactions we have covered in Chem 12A.

b. See Table 1. Use an addition reaction. Convert a C=C pi bond to a functional group.

Describe a one step synthesis of the target compound from the starting material. Use reactions we have covered in Chem 12A.

2. Move a functional group, e.g., -OH or pi bond, over one carbon. See Table 1.

a. To move a -OH or -X group over one carbon, you can use an elimination reaction to make a ______ followed by an addition reaction (2 step synthesis). Use reactions we have covered in Chem 12A.
(i) Describe how you would make 2-propyl bromide from 1-propyl bromide.
(ii) Describe how you would make 1-butanol from 2-butanol.

b. To move a pi bond over one carbon, you can use a _____ reaction reaction followed by a _____ reaction (2 step synthesis). Use reactions we have covered in Chem 12A.
(i) Describe how you would make 2-butene from 1-butene.

3. Make a big molecule from a small molecule. Make a C-C bond.

See Table 1. To make a carbon-carbon bond,

(i) use acetylide ion as Nu:⁻ and RX as substrate in a substitution reaction. FOCUS on THIS ONE.

(ii) use CN⁻ ion as Nu:⁻ and RX as substrate in a substitution reaction. (We will use this reaction in CHM 12B.)

(iii) Use C=C pi bond and carbocation in an Addition reaction.

Propose an efficient synthesis. Use reactions we have covered in Chem 12A.

a. acetylene --> propene

b. acetylene --> 1-butyne

c. acetylene --> 2-butyne

c. propene --> 2-pentyne

4. Propose an efficient synthesis: Combine ideas from Problems 1, 2, and 3. Use reactions we have covered in Chem 12A.

a. acetylene --> isopropanol

b. acetylene --> 2-butene

c. acetylene --> 1,3-butadiene

5. Propose an efficient synthesis. Hint: the only reaction we covered in Chem 12A that makes an acid is ozonolysis of alkynes.

