Objective 8. Apply equilibrium principles to acids and bases Key ideas: Many important acids and bases, e.g., H_2SO_4 in battery acid, CH_3COOH in vinegar, amino acids. Acid = H^+ donor. Every acid has a partner (conjugate) base. Base = H^+ acceptor. Every base has a partner (conjugate) acid. $HCI + H_2O --> CI^-$ H₃O E.g., Acid base conjugate base conjugate acid of HCI of H₂O Shortcut: HCI (aq) --> Cl⁻ (aq) H⁺ (aq) + Important acid-base reactions and Keq: Acid (HA) dissociation reaction: HA --> $H^+ + A^-$. K_a is K_{eq} for this reaction. $K_a = [H^+] [A^-]/[HA]$ Base (A⁻) hydrolysis reaction: A⁻ + H₂O --> HA + OH⁻. K_b is K_{eq} for this reaction. K_b = [HA] [OH⁻]/[A₁][H₂O] Water dissociation reaction: $H_2O \rightarrow H^+ + OH^-$. K_w is K_{eq} for this reaction. $K_w = [H^+][OH^-] = 1 \times 10^{-14}$. $K_w = K_a K_b$ Acids and bases are strong or weak. Strong acid easily donates its H^+ . HCl --> Cl⁻ (aq) + H^+ (aq). Complete dissociation. K_a is large. Weak acid does not easily donate its H⁺. CH₃COOH --> CH₃COO⁻ (aq) + H⁺ (aq). Partial dissociation. K_a is small. Strong base easily accept H⁺. CH₃COO⁻ (aq) + H⁺ (aq) --> CH₃COOH. K_{eq} is large. (Conjugate base of weak acid is strong.) Weak base does not easily accept H⁺. Cl⁻ (aq) + H⁺ (aq) --> HCl. K_{eq} is small. (Conjugate base of strong acid is weak.) Quantify $[H^{\dagger}]$ with pH. pH = - log $[H^{\dagger}]$. Strong acid: HCl (aq) completely dissociates into Cl⁻ (aq) and H⁺ (aq) so 0.1 M HCl = 0.1 M H⁺ ==> pH = - log [0.1] = 1 Weak acid: CH₃COOH partially dissociates into CH₃COO⁻ (aq) and H⁺ (aq) so 0.1 M CH₃COOH produces less than 0.1 M H^{+} so pH > 1. Calculate H^{+} and pH with an equilibrium calculation. CH₃COOH --> CH₃COO⁻ (aq) + $K_{eq} = 1.8 \times 10^{-5} = [CH_3COO^{-1}] [H^+]/[CH_3COOH]$ E.g., H⁺ (aq) С 0 initial 0 reacts х х х $K_{eq} = 1.8 \times 10^{-5} = [x] [x]/[C-x] = [x] [x]/[C]$ equilibrium C-x х х Note: Keq is very small so x is very small so assume C-x ≈ C $p(something) = - \log(something)$ $pOH = - \log [OH^{-}]$ $pK = -\log K$

1. You have solutions of 0.01 M acetic acid and HCI.

a. Which solution, acetic acid and HCI, has a higher concentration of H⁺? Draw a picture of this solution to support your answer.

Answer: HCl has a higher concentration of H⁺ than acetic acid because HCl is a strong acid and acetic acid is a weak acid. See Objective 8 Lecture Slide 13 Picture A.

b. Which solution is drinkable? Do these solutions have the same or different pH? Calculate the pH of each solution. Why does a weak acid have a higher pH than the same concentration of strong acid? Answer: acetic acid is drinkable because acetic acid is a weak acid and does not want to donate its proton to you. HCl has a different pH than acetic acid. HCl has a higher concentration of H⁺ than acetic acid. pH of 0.01 M HCl = -log [H⁺] = - log (0.01) = 2

Do an equilibrium calculation to determine the pH of 0.01 M CH_3COOH .

 $K_{eq} = 1.8 \times 10^{-5} = [CH_3COO^-] [H^+]/[CH_3COOH]$ $CH_3COOH --> CH_3COO^{-}(aq) +$ $H^{+}(aq)$ 0 initial C = 0.01 M0 reacts Х Х х $K_{ea} = 1.8 \times 10^{-5} = [x] [x]/[0.01-x] = [x] [x]/[0.01]$ equilibrium 0.01-x х х Note: K_{eq} is very small so x is very small so assume 0.01-x \approx 0.01 Solve for x = $[(1.8 \times 10^{-5})(0.01)]^{0.5} = 4.2 \times 10^{-4} = [H^{+}]$ $pH = -\log[H^+] = -\log(4.2 \times 10^{-4}) = 3.4$ A weaker acid has a higher pH (lower $[H^{\dagger}]$) than a stronger acid (higher $[H^{\dagger}]$). Compare the $[H^{\dagger}]$ of 0.01 M HCl and acetic acid solutions.

c. Every acid has a conjugate base. The conjugate base of a strong acid is weak. The conjugate base of a weak acid is

strong. (i) Consider the reaction:

HCI + H₂O --> Cl H₂O[†] conjugate base Acid base conjugate acid of HCI of H₂O This reaction is the acid dissociation reaction. A shortcut for this reaction is: HCI (aq) --> Cľ H⁺ (aq) + The acid dissociation equilibrium constant, K_a , is: $K_a = [CI] [H^{\dagger}]/[HCI]$ HCl is a strong acid. Is K_a for HCl large or small? Answer: a strong acid, like HCI, has a large K_a. Draw a picture of HCI (ag). Answer: see Objective 8 Lecture Slide 13 Picture A. Use your picture of HCI to explain why conjugate base of HCI is weak. In other words, why doesn't the above reaction go in the reverse direction? Answer: HCl is a strong acid and wants to donate its H^{+} and dissociate into H^{+} and Cl⁻. The conjugate base, Cl⁻, is a weak base and does not want to accept H⁺ to reform HCI. (ii) H₂O can behave like an acid or a base: OH H_3O^+ (ag) $H_2O + H_2O -->$ This reaction is the water dissociation reaction. A shortcut for this reaction is: H₂O --> OH H⁺ (aq) + The water dissociation equilibrium constant, K_w , is: $K_w = [OH] [H^+] = 1 \times 10^{-14}$. Draw a picture of H₂O. Answer: see Objective 8 Lecture Slide 13 Picture B. Water consists of almost all H₂O molecules with about 1 H⁺ and 1 OH⁻ for every 10 million H₂O molecules. Use your picture of H₂O to explain why the conjugate acid of H₂O is strong. Answer: H_2O is a weak base and does not want to accept a H⁺ to form H_3O^+ . The conjugate acid, H_3O^+ , is a strong acid and wants to donate H^{+} to reform $H_{2}O$. Use your picture of H₂O to explain why the conjugate base of H₂O is strong. Answer: H_2O is a weak acid and does not want to donate its H^+ and dissociate into H^+ and OH. The conjugate base, OH, is a strong base and wants to accept H^{\dagger} to reform H₂O. (iii) Consider the reaction: CH₃COOH + H₂O --> CH₃COO⁻ H₃O⁺ Acid conjugate base conjugate acid base of CH₃COOH of H₂O This reaction is the acid dissociation reaction. A shortcut for this reaction is: CH₃COOH (aq) --> CH₃COO⁻ H⁺ (aq) Write the acid dissociation equilibrium constant, K_a, for acetic acid. Answer: $K_a = [CH_3COO^-] [H^+]/[CH_3COOH]$ CH₃COOH is a weak acid. Is K_a for CH₃COOH large or small? Look up the K_a of CH₃COOH. You can find a table of K_a's for weak acids in the textbook or on the internet. Answer: a weak acid, like CH₃COOH. has a small K_a. For CH₃COOH, $K_a = 1.8 \times 10^{-1}$ (iv) When a base is dissolved in water, it reacts with water to form its conjugate acid and OH⁻. For example, sodium acetate (NaCH₃COO) is a base. The CH₃COO⁻ part is the basic part of this compound. CH₃COO⁻ + H₂O --> CH₃COOH OH. + Base acid conjugate acid conjugate base of CH₃COO⁻ of H₂O This reaction is the base hydrolysis reaction. The base hydrolysis equilibrium constant, K_b , is: $K_b = [CH_3COOH] [OH]/[CH_3COO]$. A table of K_h's for weak bases are not as easily found as for K_a's. But you can calculate K_b as long as you know the K_a of the conjugate acid using the formula: $K_aK_b = K_w$. What is the numerical value of K_b for CH₃COO⁻? Answer: For CH₃COOH, K_a = 1.8×10^{-5} For CH₃COO⁻, K_b = K_w/ K_a = 1 x $10^{-14}/1.8 \times 10^{-5} = 5.6 \times 10^{-10}$ 2. pH calculations for a weak acid – use K_a. a. Aspirin has a pK_a of 3.5; salicylic acid has a pK_a of 2.98. Is aspirin a stronger or weaker acid than salicylic acid? To

confirm your answer, write the acid dissociation reaction for each acid, calculate the equilibrium constant, K_a , for each acid, and briefly discuss what the value of K means.

Answer: Aspirin is a weaker acid than salicylic acid. pK_a = - log K_a Solve for $K_a = 10^{-pKa}$ Aspirin: $K_a = 10^{-3.5} = 3.2 \times 10^{-4}$ Salicylic acid: $K_a = 10^{-2.98} = 1.05 \times 10^{-3}$ Smaller K_a (or larger pK_a) means weaker acid.

b. Acetic acid is the acid in vinegar. Write the acid dissociation reaction for this acid. Look up the K_a of acetic acid. Calculate the pH of a 0.1 M acetic acid solution. To calculate pH, do an equilibrium calculation:

i o oulouluto p	si i, ao an' oquiisn	ann baibaiation.		_
	CH₃COOH>	CH₃COO⁻ (aq) +	H⁺ (aq)	$K_a = 1.8 \times 10^{-5} = [CH_3COO^-] [H^+]/[CH_3COOH]$
initial	0.1	0	0	
reacts	х	Х	х	
equilibrium	0.1-x	Х	х	$K_a = 1.8 \times 10^{-5} = [x] [x]/[0.1-x] \approx [x] [x]/[0.1]$
				Note: K _a is very small so x is very small so

Solve for $x = [H^+] = 1.34 \times 10^{-3} M_{\odot}$

 $pH = -\log [H^+] = -\log (1.34 \times 10^{-3}) = 2.9$

The pH of a 0.1 M acetic acid solution is 2.9.

Vinegar is 0.9 M acetic acid. Does vinegar have a higher or lower pH than 0.1 M acetic acid? Calculate the pH of vinegar to confirm your answer.

assume 0.1 -x ≈ 0.1

Answer: vinegar has a lower pH than 0.1 M acetic acid. Same equilibrium calculation as above but C = 0.9 M instead of 0.1 M. So $K_a = 1.8 \times 10^{-5} = [x] [x]/[0.1-x] \approx [x] [x]/[0.9]$ Solve for x = [(1.8 x 10⁻⁵)(0.9)]^0.5 = 4.0x10⁻³ = [H⁺]

 $pH = -log[H^+] = -log(4.0x10^{-3}) = 2.4$

c. Carbonic acid is found in soda. Write the acid dissociation reaction for this acid. Look up the K_a of carbonic acid. Calculate the pH of a 0.1 M carbonic acid solution. (Answer: pH between 3 and 4) Answer: carbonic acid = H₂CO₃ acid dissociation reaction: H₂CO₃ <==> H⁺ + HCO₃⁻ K_a = 4.2x10⁻⁷ Same equilibrium calculation as above but use K_a for carbonic acid and C = 0.1 M. K_a = 4.2x10⁻⁷ = [X] [X]/[0.1-X] ≈ [X] [X]/[0.1] Solve for x = [(4.2x10⁻⁷)(0.1)]^0.5 = 2.0x10⁻⁴ = [H⁺] pH = - log[H⁺] = -log(2.0x10⁻⁴) = 3.7

d. Benzoic acid is found in food preservatives. Write the acid dissociation reaction for this acid. Look up the K_a of benzoic acid. Calculate the pH of a 0.1 M benzoic acid solution. (Answer: pH between 2 and 3)

Answer: benzoic acid = C_6H_5COOH acid dissociation reaction: $C_6H_5COOH <==> H^+ + C_6H_5COO^ K_a = 6.5x10^{-5}$ Same equilibrium calculation as above but use K_a for carbonic acid and C = 0.1 M. $K_a = 6.5x10^{-5} = [x] [x]/[0.1-x] \approx [x] [x]/[0.1]$ Solve for $x = [(6.5x10^{-5})(0.1)]^{0.5} = 2.5x10^{-3} = [H^+]$ $pH = - log[H^+] = -log(2.5x10^{-3}) = 2.6$

e. Vinegar contains acetic acid and has a pH of 2.4. Calculate the concentration of acetic acid in vinegar. (Answer: between 0.8 and 1 M)

Answer: equilibrium calculation as above but you know K_a and $[H^{\dagger}]$ from pH.

 $K_a = 1.8 \times 10^{-5} = [CH_3COO^{-1}] [H^{+1}] [CH_3COOH]$ $CH_3COOH --> CH_3COO^{-}(aq) +$ H⁺ (aq) initial С 0 0 reacts Х Х х equilibrium C-x x x = $[H^+] = 10^{-pH} = 10^{-2.4} = 4.0 \times 10^{-3} M_{\odot}$ $K_a = 1.8 \times 10^{-5} = [x] [x]/[C-x] \approx [x] [x]/[C]$ х $K_a = 1.8 \times 10^{-5} = [4.0 \times 10^{-3}] [4.0 \times 10^{-3}]/[C]$ Solve for C = 0.88 M

3. pH calculations for a weak base – use K_b.

a. You have 0.1 M solutions of NaOH (strong base) and NaHCO₃ (weak base). Explain why the strong base has a higher pH than the weak base. Draw a picture of each solution to support your answer.

Answer: $K_w = [H^+] [OH^-] = 1 \times 10^{-14} \text{ or } pH + pOH = 14$

```
Higher [OH] means lower [H^+].
```

NaOH dissociates into Na⁺ and OH⁻ so 0.1 M NaOH means [OH⁻] = 0.1 M.

NaHCO₃ is a weak base so HCO₃⁻ reacts with H₂O in a base hydrolysis reaction. HCO₃⁻ + H₂O --> H₂CO₃ + OH⁻ Base acid conjugate acid conjugate base

of H₂O

 HCO_3^{-1} is a weak base so it does not want to accept H+ from H2O. At equilibrium, there is mostly reactants (HCO_3^{-1} and H_2O) and hardly any products ($H_2CO_3^{-1}$ and OH^{-1}).

The [OH] in 0.1 M NaHCO₃ is much lower than the [OH] in 0.1 M NaOH.

Since higher [OH] means lower [H⁺], this means the [H⁺] in 0.1 M NaHCO₃ is much higher than the [H⁺] in 0.1 M NaOH. Higher [H⁺] means lower pH.

b. Baking soda is sodium bicarbonate. What is the conjugate acid of baking soda? Write the base hydrolysis reaction for this base. Calculate K_b . Calculate pOH. Calculate pH. (Answers: pOH between 4 and 5. pH between 9 and 10.) Answer: NaHCO₃ is a weak base so HCO₃⁻ reacts with H₂O in a base hydrolysis reaction. H₂CO₃ is the conjugate acid of HCO₃⁻. K_a of H₂CO₃ = 4.2 x 10⁻⁷

 $K_{b} = K_{w}/K_{a} = 1 \times 10^{-14}/4.2 \times 10^{-7} = 2.4 \times 10^{-8}$ HCO_3^{-} + H₂O --> $H_2CO_3 +$ OH initial C = 0.10 0 reacts Х х х equilibrium 0.1-x Х x $K_{b} = 2.4 \times 10^{-8} = [x] [x]/[0.1-x] \approx [x] [x]/[0.1]$ Solve for x = $[OH^{-1}] = 4.9 \times 10^{-5}$ $pOH = -\log [OH^{-}] = -\log (4.9 \times 10^{-5}) = 4.3$ pH + pOH = 14 OR pH = 14 - pOH = 14 - 4.3 = 9.7

c. Sodium salicylate is the conjugate base of salicylic acid. Write the base hydrolysis reaction for this base. Calculate K_b . Calculate pOH. Calculate pH. (Answer: pH between 7.5 and 8.5)

Answer: salicylate ion = $C_7H_5O_3^{-1}$. Salicylic acid, $C_7H_6O_3$, is the conjugate acid of $C_7H_5O_3^{-1}$. K_a of $C_7H_6O_3$ = 1.1 x 10⁻³

 $C_7H_5O_3$ is a weak base so $C_7H_5O_3$ reacts with H_2O in a base hydrolysis reaction.

 $K_{b} = K_{w}/K_{a} = 1 \times 10^{-14}/1.1 \times 10^{-3} = 9.3 \times 10^{-12}$ $C_7 H_5 O_3^- +$ H₂O --> $C_7H_6O_3 +$ OH initial C = 0.10 0 reacts Х Х Х equilibrium 0.1-x х Х $K_b = 9.3 \times 10^{-12} = [x] [x]/[0.1-x] \approx [x] [x]/[0.1]$ Solve for $x = [OH^{-}] = 9.7 \times 10^{-7}$ $pOH = -\log [OH^{-}] = -\log (9.7 \times 10^{-7}) = 6.0$ pH + pOH = 14 OR pH = 14 - pOH = 14 - 6.0 = 8.0

4. Concentrated sulfuric acid (18 M) is used as the electrolyte in car batteries.

a. Calculate the pH of battery acid. (pH will be negative.)

 $pH = -log[H^{+}] = -log(18) =$

b. Sulfuric acid is a diprotic acid. However, H^* and HSO_4^- are the two ions predominantly present. Explain why the concentration of $SO_4^{2^-}$ is very low in sulfuric acid.

$H_2SO_4 \rightarrow H^+ + HSO_4^-$	K_a = large since H ₂ SO ₄ is a strong acid so solution consists of H ⁺ and HSO ₄ ⁻ ions.
$HSO_4^> H^+ + SO_4^{-2}$	$K_a = 10^{-2}$ since HSO ₄ is a weak acid so solution contains almost all HSO ₄ ions and
	hardly any SO_4^{-2} ions.

c. At what pH will HSO_4^- and SO_4^{-2-} be observed? Give reasons.

As solution gets more basic (less acidic), $HSO_4^- -> H^+ + SO_4^{-2}$ reaction shifts to product side (LeChatelier's principle). We will learn in Objective 8 that at pH greater than 2, both HSO_4^- and $SO_4^{-2}^-$ will be observed.