#### Chem 1B Objective 3:

Identify the chemical forces in ionic and molecular solutions.

## Key Ideas:

Most substances are mixtures. Important mixtures are solutions. Chemical forces are important in separating and transporting substances.

See chemical forces between solute and solvent, solute-solute, solvent-solvent.

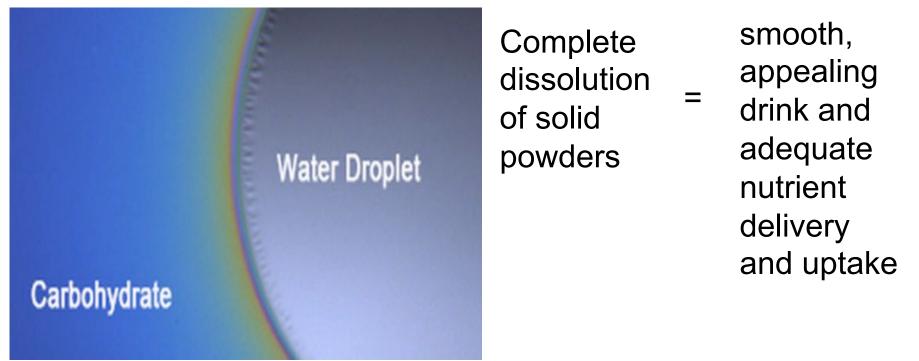
The relative strength of these chemical forces determines solubility.

E.g., if solute-solvent forces are stronger than solute-solute or solvent-solvent, the solute dissolves in solvent.

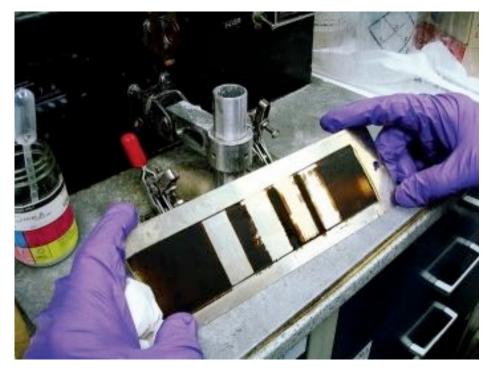
#### Soaps and Detergents use Solubility to Clean

# Automatic Dishwashing: Technology At Heart Of New Product (CEN, January 30, 2006, p. 16)

Finish Quantum, which contains a softening salt, a rinse aid, and a glass protector in one single-dose product that combines three physical forms: powder, gel, and the firm's Powerball cleaning sphere.


According to Reckitt, these forms can coexist because they are hived apart in a threechambered capsule made of water-soluble polyvinyl alcohol. The chambers isolate otherwise incompatible cleaning agents and release them at the right stage of the dishwashing cycle, the company says.

One of the ingredients being kept separate is a self-activating bleaching agent called 6-(phthalimido)peroxyhexanoic acid, or PAP for short. Magg says PAP bleaches away stains more effectively than does the traditional ADW combination of sodium percarbonate with the activator tetraacetylethylenediamine.




http://www.foodnavigator.com/Science-Nutrition/Nestle-claims-credit-for-major-advance-in-beverage-powdersolubility?

6/5/14, Nestlé claims credit for 'major advance' in beverage powder solubility



The SOFTNESS of the substrate in the immediate VICINITY of the water droplet determines the amount of water absorbed. Dissolution depends on the physical and chemical nature of the substrate (sugar) and solvent (water). C&EN, 6/2/14, p. 24 (<u>http://cen.acs.org/articles/92/i23/Cleaning-Conundrum.html</u>) Eastman Chemical Invents a <u>New Cleaning Solvent</u> for household and industrial cleaning products that meets the EPA standards for toxicity and VOC content.



Trade Name: Omnia

Butyl 3-hydroxybutyrate

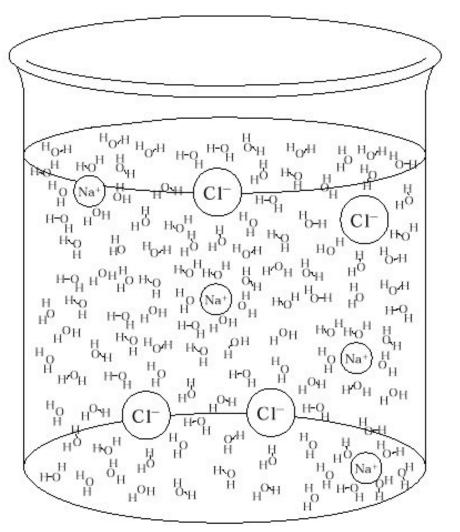
Eastman's Scrubinator

Replaces: ethylene glycol monobutyl ether (CA hazardous substance) dipropylene glycol monomethyl ether (VOC)

#### New Cleaning Solvents (http://cen.acs.org/articles/93/i3/Cleaning-Product-Makers-Bask-New.html)

**PROBLEM SOLVERS** New solvents that meet strict VOC standards are proliferating.

| Omnia            | In the second second second second  |                                                                    |
|------------------|-------------------------------------|--------------------------------------------------------------------|
| Omnia            | Eastman                             | Industrial cleaners<br>and degreasers                              |
|                  |                                     |                                                                    |
| Steposol MET-10U | Stepan                              | Household<br>cleaners, adhesive<br>removal, paint<br>strippers     |
|                  |                                     |                                                                    |
| Dowanol DiPPh    | Dow                                 | Household cleaners                                                 |
|                  |                                     |                                                                    |
| None             | Segetis                             | Detergents,<br>hard-surface<br>cleaners, graffiti<br>removal       |
| Clean 1200       | Elevance                            | Heavy<br>manufacturing,<br>food processing                         |
| Zemea            | DuPont                              | Laundry detergents,<br>hard-surface<br>cleaners, glass<br>cleaners |
|                  | Dowanol DiPPh<br>None<br>Clean 1200 | Dowanol DiPPhDowNoneSegetisClean 1200Elevance                      |


#### Most Substances are Mixtures: Solutions

A solution consists of

- a) Solid and liquid
- b) Solute and solvent
- c) Solvent and substance

"If you're not part of the solution, you're part of the

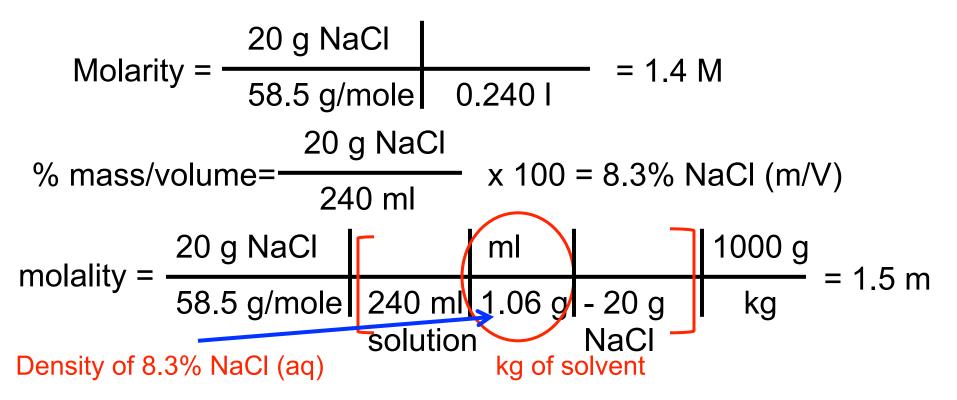
-- Steven Wright



http://wikis.lawrence.edu/display/ CHEM/Practical+Solutions-Schroeder

# **Objective:** Quantify the Amount of Solute in a Solution by Concentration

Molarity (M) = moles of solute/liter of solution


% by mass = g of solute/100 g of solution % by volume = ml of solute/100 ml of solution % (mass/volume) = g of solute/100 ml of solution

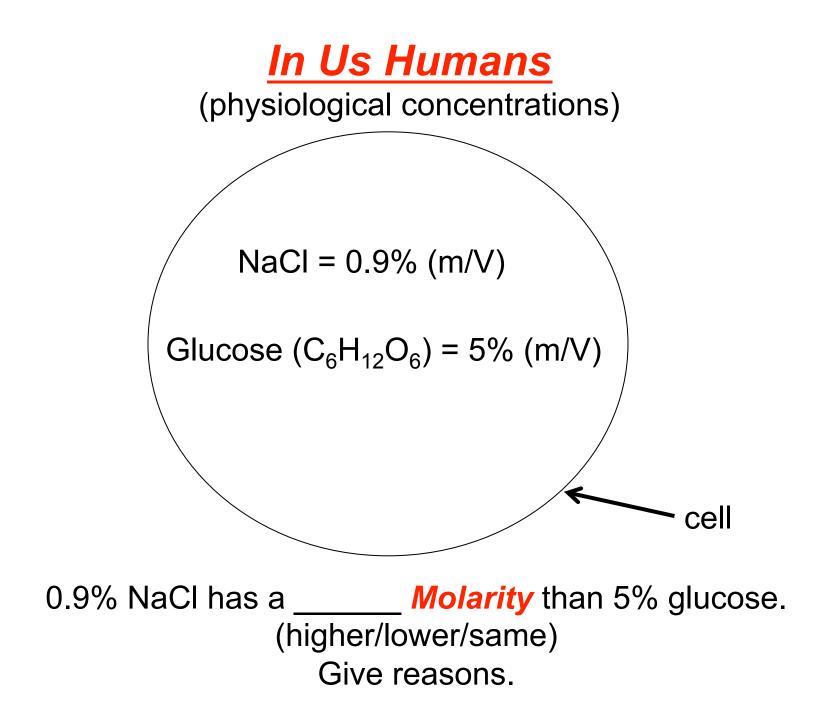
molality (m) = moles of solute/kg of solvent

20 g of NaCl is dissolved in enough water to make 1 cup of solution. Calculate the concentration.

**Objective:** Quantify the Amount of Solute in a Solution by Concentration

Molarity (M) = moles of solute/liter of solution % (mass/volume) = g of solute/100 ml of solution molality (m) = moles of solute/kg of solvent 20 g of NaCl is dissolved in enough water to make 1 cup (240 ml) of solution. Calculate the concentration.




**Objective:** Quantify the Amount of Solute in a Solution by Concentration

25 g of sugar (sucrose,  $C_{12}H_{22}O_{11}$ ) is dissolved in enough water to make 250 ml of solution.

Calculate the concentration in:

(i) Molarity(ii) molality(iii) % (mass/volume)

Useful information: density of this sugar-water solution is 1.04 g/ml (http://homepages.gac.edu/~cellab/chpts/chpt3/table3-2.html)

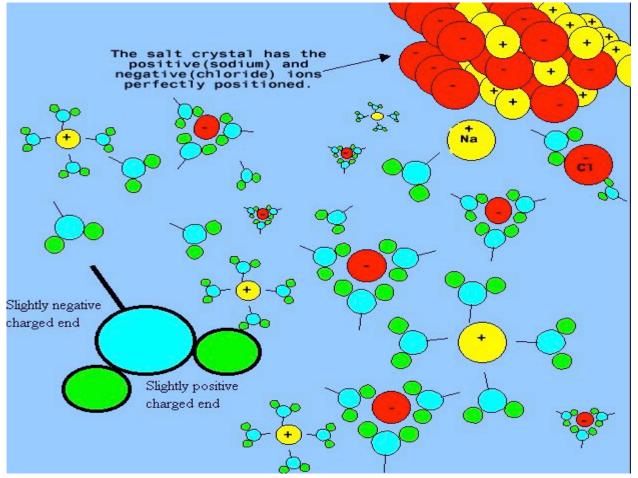


<u>Chem 1A</u>: Solubility of one substance in another depends on polarity ("like dissolves like"). You can predict whether one substance is soluble in another.

1. Is salt (NaCI) soluble in water? Give reasons.

2. Is oil soluble in water? Give reasons.

3. Is gasoline soluble in oil? Give reasons.


But According to the <u>Solubility</u> <u>Rules Table</u> ===> <u>Not</u> all ionic compounds are soluble in water.

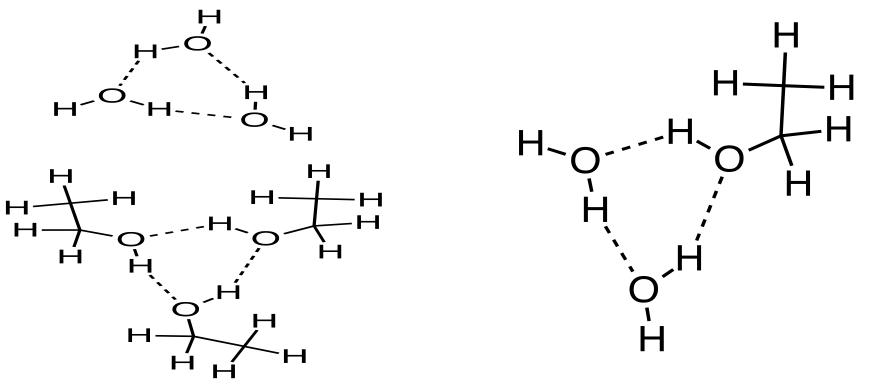
E.g., AgCl is <u>not</u> soluble in water. Why not?  $CaCO_3$  is <u>not</u> soluble in water. Why not?



http://jerpchem11.blogspot.com/ 2010/03/solution-chemistrymar30.html

Chem 1B: Solubility of one substance in another depends on solution type: **lonic solution** - look at *lattice energy* vs. *hydration energy NaCl is soluble in water because hydration energy* > *lattice energy* 




*But* AgCl is <u>not</u> soluble in water because

Draw a picture.

http:// www.dynamicscience.com.au/ tester/solutions/chemistry/ solutionconcentration.htm

Chem 1B: Solubility of one substance in another depends on solution type:

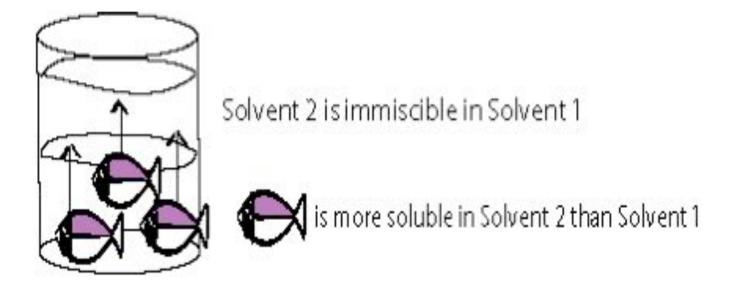
Molecular solution - look at <u>similar intermolecular forces</u> E.g., ethanol is soluble in water. Each substance has H bonds. So ethanol can H bond to water (and break H bonds between water molecules).



Chem 1B: Solubility of one substance in another depends on solution type:

**Molecular solution** - look at *similar intermolecular forces* E.g., sugar is soluble in water because . See Lab 2. CH2OH OH CH2OH 0 н н OĤ Н OH Н Н ÓН ÓН Н Ĥ CH2OH ÓН ÓН н Glucose Fructose CH2OH ÇH₂OH OH Η н Ĥ. ÔĤ н OH н ÓН ĊH<sub>2</sub>OH ÓН Ĥ ÔH https://racheltestenc.blogspot.com/2013/09/ Sucrose high-fructose-corn-syrup.html

Oil is <u>not</u> soluble in water because \_\_\_\_\_. Draw a picture.


Oil = C<sub>20</sub>H<sub>42</sub> <u>Hint</u>: Is oil polar or non-polar? What IM forces exist between oil molecules? What IM forces exist between water molecules? Can oil break the IM forces between water?

<u>Understanding the Solution Process and Properties Allows</u> <u>You to Control Nature</u>

Solution music video:

http://jerpchem11.blogspot.com/2010/03/solution-chemistry-mar30.html

You can use the Solution Process to <u>Separate</u> a Mixture <u>Liquid-liquid extraction</u>:



E.g.,  $Cl_2$  in water. Add hexane.  $Cl_2$  is more soluble in hexane than water so  $Cl_2$  moves (extracted/leached) from water to hexane.

Lab 1. Part C You synthesized iso-amyl acetate (banana ester). You have a mixture of banana ester, iso-amyl alcohol, and acetic acid. Add this mixture to water.

You see two layers form.

The \_\_\_\_\_ and \_\_\_\_ are more soluble in \_\_\_\_\_ than in the \_\_\_\_\_ so the alcohol and acid are extracted into the water.

a) Ester, alcohol, acid, water

b) Alcohol, acid, ester, water

c) Alcohol, acid, water, ester

## Solid-liquid extraction:

Coffee beans contain many compounds, including caffeine.a) What substance is used to remove/extract caffeine and other substances from coffee beans to make a cup of coffee?

- b) What factors determine how much "stuff" is extracted from coffee beans?
- c) What substance can be used to remove/extract caffeine only from coffee beans to make decaf?
- d) What factors are considered?

*How to make a strong cup of coffee?* Solid-Liquid Extraction Find a solvent in which the caffeine and other substances are soluble. Solubility depends on \_\_\_\_\_.



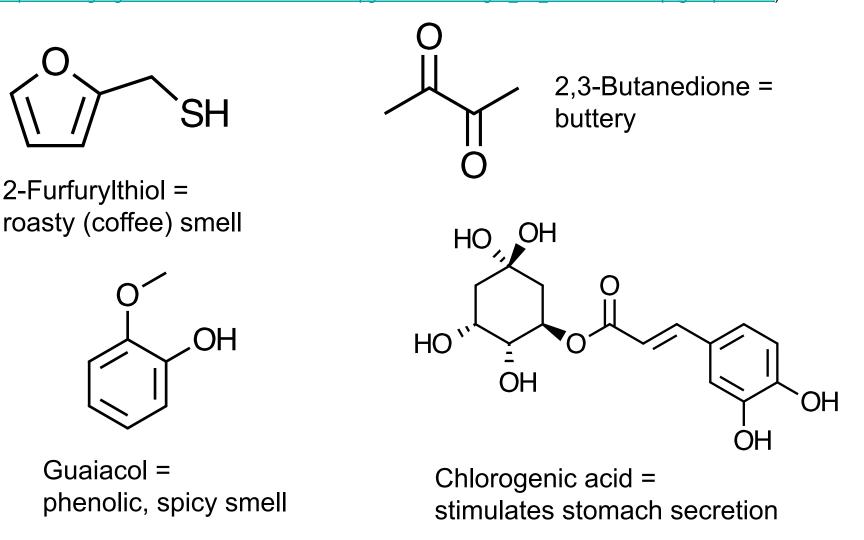
http://cen.acs.org/articles/92/i39/ Coffee-Brew-Coffee-Beans.html Blossom Coffee:

\$5,000 coffee maker!

<u>**Temperature control**</u> within 0.5 °F across a two- to four-minute brew cycle brews a \$5,000 cup of coffee.

Coffee beans:

hundreds of flavor components soluble at *different* rates and


#### temperatures

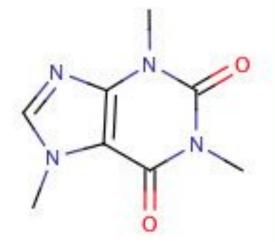
Adjustable brewing temperature brings out many different desirable flavors.

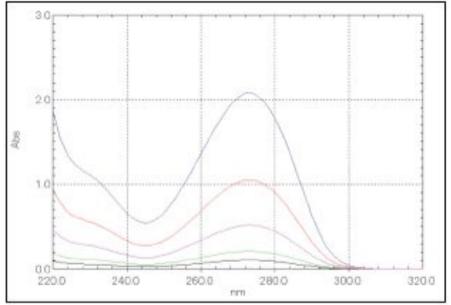
## Coffee has over 1500 substances (850 volatile, 700 soluble)

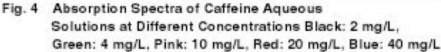
http://www2.illy.com/wps/wcm/connect/us/illy/the-world-of-coffee/the-science-of-coffee/ http://www.coffeeresearch.org/science/aromamain.htm "Coffee: Physiology", 1988, By R. J. Clarke, R. Macrae

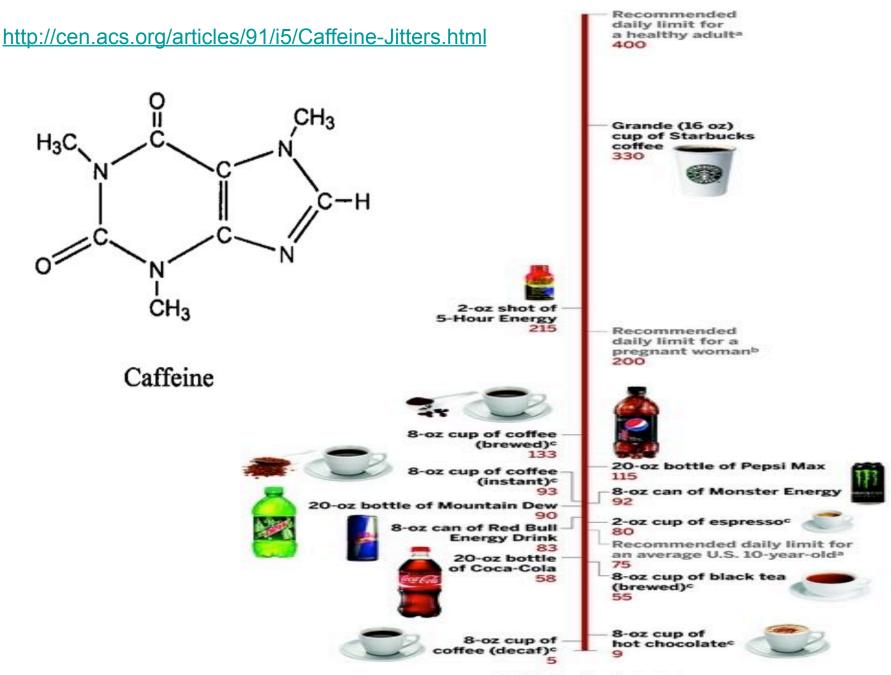
(http://books.google.com/books?id=ol6LtxfEKkwC&pg=PA2&source=gbs\_toc\_r&cad=4#v=onepage&g&f=false)



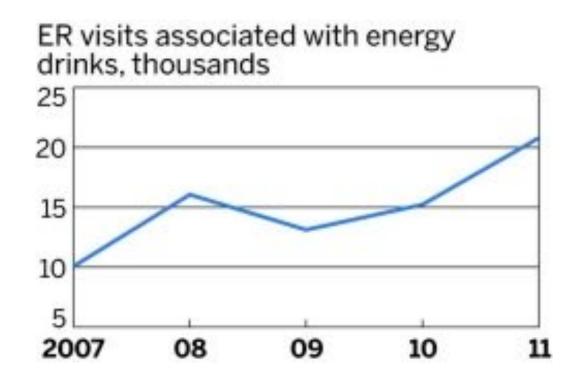

How to make decaf? <u>Extract caffeine only from coffee by:</u> Using a solvent in which caffeine is soluble but the other substances are not. E.g.,  $C_6H_6$ ,  $CHCI_3$ ,  $CH_2CI_2$ , ethyl acetate


# Measure amount of caffeine extracted by:


1. "Measurement of caffeine in coffee beans with UV/vis spectrometer", A. Belay, et al. (<u>http://www.sciencedirect.com/science/article/pii/S0308814607010308</u>) <u>www.sepscience.com/.../449db804-202c-4e19-b793-4fb8ab12eb23</u> Absorption spectrum shows  $\lambda_{max} = 275$  nm


2. HPLC analysis

(www.csun.edu/~hcchm003/321I/321Imlc.pdf)










Caffeine levels, mg



#### **EMERGENCIES**

Energy drinks are being increasingly linked with hospital visits in the U.S. Note: ER visits for 2012 not yet available. Source: Substance Abuse and Mental Health Services Administration

http://cen.acs.org/articles/91/i5/Caffeine-Jitters.html

# C&EN, 8/12/13, p. 6

http://cen.acs.org/articles/91/i32/Caffeine-Disrupts-Brain-Growth-Mice.html

# Caffeine disrupts brain growth in mice

(who were given the equivalent of 3-4 cups of coffee per day)





# C&EN, 1/20/14, p. 34

http://cen.acs.org/articles/92/i3/Caffeine-Boosts-Memory-Humans.html

# Caffeine boosts memory in humans (who drank 1.5 cups of coffee per day)

# You' re boiling water to cook pasta or beans *Why Add Salt to Water?*

Adding salt to the water

- a) Makes the water salty
- b) Makes the water boil faster
- c) Cooks the pasta or beans faster
- You' re not paying attention and keep adding salt to water. At some point,
- a) The water is still salty
- b) The salt will continue to dissolve in the water
- c) The solution will become saturated and no more salt dissolves

What does "saturated solution" mean?

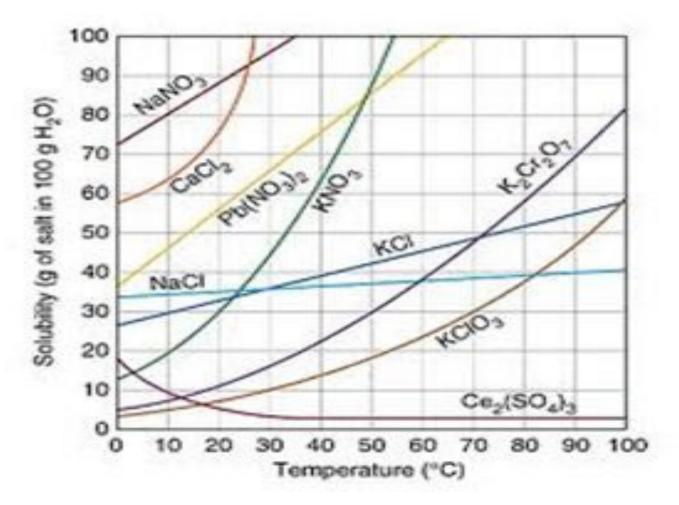
**Objective**: determine the solubility of a solid in water.

You can get more NaCl to dissolve in water by

- a) Heating up the water
- b) Cooling down the water
- c) Using less water






In general, Solids are Soluble in Hot Solvent See heat of dissolution and equilibrium principles

#### Temperature dependence on solubility of ionic salts

http://chempaths.chemeddl.org/services/chempaths/?q=book/General%20Chemistry%20Textbook/1174/ introduction-ambit-

<u>chemistry&title=Saturated\_and\_Supersaturated\_Solutions&title=Saturated\_and\_Supersaturated\_Solutions\_in</u> <u>the\_Environment</u>

(See also Chang, 6<sup>th</sup> ed., Ch. 13, Fig. 13.2)



Temperature dependence on solubility of SUGAR in water Determines SUGAR COMPOSITION (% sugar) and Determines CANDY TEXTURE and TYPE.

Texture = crystal size





http://www.thekitchenwitchblog.com/wpcontent/uploads/2013/12/Milk-Duds.jpg https://macarenastore.com/wp-content/uploads/ 2019/03/BULTO-JOLLY-RANCHER.png

Lab 2. bring table sugar (sucrose), corn syrup, milk (for Part C), a cooking pot or pan, spoon, and cooking thermometer (measures to 350°F/180°C))

## **Objective**: determine the solubility of gases in water

Soda Stream lets you make your own soda! You can get CO<sub>2</sub>

- to dissolve in water by
- a) Heating up the water
- b) Cooling down the water
- c) Raising the pressure





# Gases are \_\_\_\_\_ Soluble in Hot Solvent Gases are \_\_\_\_\_ Soluble at High Pressure

# *FizzKeepers* - does it work to keep soda from going flat?

http://fizzkeeper.org/ http://www.stevespanglerscience.com/experiment/00000103 http://www.amazon.com/Jokari-5100-Fizz-Keeper-Pump-Pour/dp/B00004XSH6



http://www.jokari.com/products/g\_05002.html

#### As Pepsi is heated, it loses mass. Explain this observation.

http://www.dairyqueen.com/en/ Menu/Drinks/Pepsi/



http://www.rickly.com/ sai/hotplate.htm R. Chang, "General Chemistry: The Essential Concepts," 6th ed., Problem 13.107 "A student carried out the following procedure to measure the pressure of  $CO_2$  in a soft drink bottle. First, she weighed the bottle (853.5 g). Next, she carefully removed the cap to let the  $CO_2$  gas escape. She then reweighed the bottle with the cap (852.3 g). Finally, she measured the volume of the soft drink (452.4 ml). Given that Henry's law constant for  $CO_2$  in water at  $25^{\circ}C$  is  $3.4x10^{-2}$  mol/L atm, calculate the pressure of  $CO_2$  in the original bottle. Why is this pressure only an estimate of the true value?"

Henry's law: k p = C where k = Henry's law constant, p = partial pressure of solute in gas above solution, C = concentration

#### Lab 2: How Can We Measure the Amount of CO<sub>2</sub> in Soda?

Explain what happens when a can of soda is opened. Name two ways to get more  $CO_2$  to dissolve in water.

1. Solubility of a gas is proportional to Pressure (Henry's law)

2. Measure the gas pressure in an unopened soda can. Capture  $CO_2$  gas after opening can. Determine pressure by:

3. Quickly pour soda into a graduated cylinder.Measure \_\_\_\_\_.Determine pressure by: