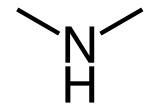
Objective 4

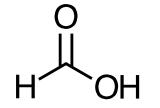
Intro to Reactivity 1: identify acids and bases using Lewis definition.

Use curved arrows to show how base reacts with acid.

Relate strength to pK_a.

Determine direction of equilibrium.

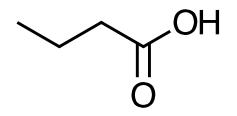

Use pK_a table to estimate pK_a of acid based on structure.

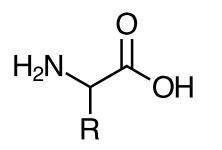

Many Organic compounds are acids or bases (or both)

Many Organic compounds undergo acid-base reactions

Acid-base (proton transfer) reactions are very fast

Dimethyl amine is a base and smells like dirty socks. Neutralize with acid to get rid of smell.

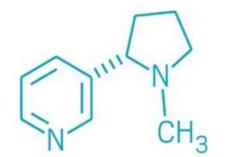

Formic acid is in ant venom and stings when you are bitten by an ant. Use a base, e.g., baking soda, for relief. Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions

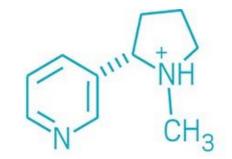


isosolenopsin A fire ant venom

Tawny crazy ant uses formic acid as fire ant venom antidote CEN, 3/3/14, p. 44

Butyric acid smells terrible. Use a base to get rid of smell.




Amino acids change charge (and properties) depending on pH.

https://cen.acs.org/analytical-chemistry/spectroscopy/E-cigaretteschemistry-explainpopularity-among/96/i22

E-cigarettes, e.g., Juul – protonated nicotine is less harsh (more pleasant) than free-base nicotine ("scratchy, back-ofthe-throat feeling").

Protonated nicotine

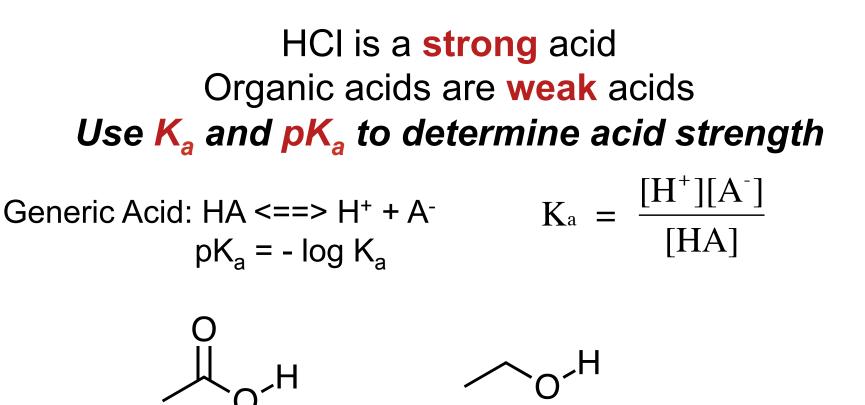
Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions Acid-base (proton transfer) reactions are very fast

Application

Lab 2:
Do an acid-base extraction to separate a mixture:
You have a mixture of a weak acid and weaker acid.
Add a base that reacts with one acid but not the other
→ Separate weak acid from weaker acid.

Acid-Base (H⁺ Transfer) Reactions Are Very Common In Organic Chemistry

Bronsted-Lowry definition:


Acids are proton (H⁺) donors ("*Givers*") Bases are H⁺ acceptors ("*Takers*")

Every acid has a partner (conjugate) base. (Remove acidic H)

$$\begin{array}{rcl} \mathsf{HCI} &+& \mathsf{H}_2\mathsf{O} & \dashrightarrow & \mathsf{H}_3\mathsf{O}^+ && + & \mathsf{CI}^-\\ \text{acid} & \text{base} & \text{conjugate acid} & \text{conjugate base}\\ & & \text{of} & & & \text{of} \end{array}$$

Lewis definition:

Acids are electron pair acceptors (electrophile) Bases are electron pair donors (nucleophile) Electron pairs ===> curved arrows

Which organic compound is the <u>stronger acid</u>? Give reasons. Draw the conjugate base of each compound. Which conjugate <u>base</u> is <u>stronger</u>? Give reasons.

 $pK_{a} = 16$

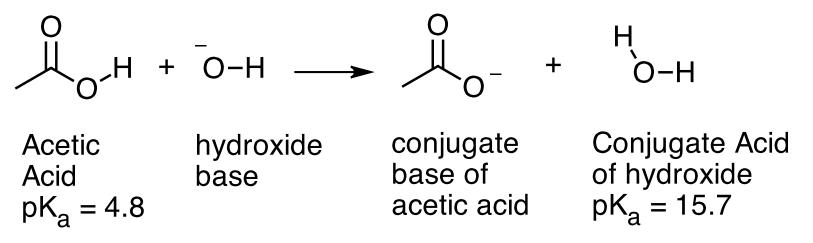

 $pK_{a} = 4.8$

Table 3.1 pK_a of common compounds (Klein, p. 100)

acid	рК _а	base	
H-ci:	-7	• •	Large pK _a ==> weak acid Every acid has a partner
H、••,H O,+ H	-1.7	H _\ i-H 3	(conjugate) base Acids are listed from strongest to weakest
0		4	Bases are listed from weakest to strongest
Щ₀_н	4.8	<u> </u>	Conjugate base of a weak acid is strong
H _O H	15.7	6 _ О-Н _	base is strong
∕_o_H	16	7. 	with any base <u>below</u> it ==> Need a Strong Base
н— <u>—</u> н	25	н—————————————————————————————————————	<i>to react with a Weak</i> Acid

What Base Should I Use to React with an Acid? (Or How to Determine the Position of Equilibrium)

Will CH₃COOH react with OH⁻? YES

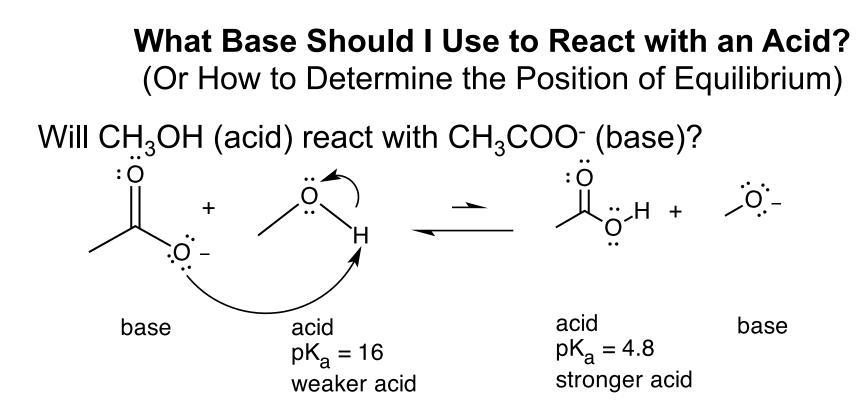
 OH^{-} (base) is below $CH_{3}COOH$ (acid) on the pK_a table. OH⁻ is a strong enough base to react with $CH_{3}COOH$. Reaction occurs:

> Stronger acid (CH₃COOH) \rightarrow weaker acid (H₂O) Stronger base(OH⁻) \rightarrow weaker base (CH₃COO⁻)

Position of the equilibrium? *More products*/less reactants

What Base Should I Use to React with an Acid? (Or How to Determine the Position of Equilibrium)

Will CH_3OH (acid) react with CH_3COO^- (base)?


 $CH_3OH + CH_3COO^- \rightarrow CH_3O^- + CH_3COOH$

 $pK_a \text{ of } CH_3OH = ?$ $pK_a \text{ of } CH_3COOH = ?$

 CH_3OH is _(above/below)_ CH_3COO^- on the pK_a table.

Will there be more products or more reactants? More products More reactants

What is the position of the equilibrium? More products More reactants

CH₃OH is *below* CH₃COO⁻ on the pK_a table. CH₃COO⁻ is NOT a strong enough base to react with CH₃OH.

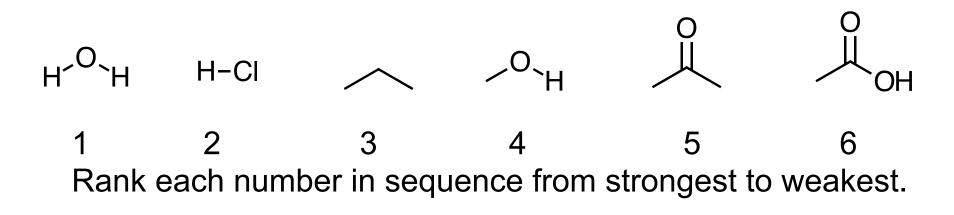
Will there be more products or more reactants?

What is the position of the equilibrium? More reactants

More practice: Klein, Problem 3.52

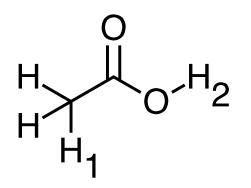
Acid	Conjugate base	pK,	Acid	Conjugate base	pK,
ICIO4	CIO₄ [−]	- 10	HCN	CN-	9.2
41	1-	- 10	NH4+	NH3	9.2
+он	P		ArOH	ArO ⁻	10
ан	в—С—н	- 10	R-CH2NO2	R−ĈH−NO₂	10
		- 10	RNH3+	RNH ₂	11
I₂SO₄	HSO₄	- 10	RSH	RS ⁻	11
1Br 1Cl	Br Cl	-7	°	o o	
*он 	o ₽	- 7		CH3 OR	11
k−C−R	R—C—R		сн3он	CH3O-	15.
ArSO ₃ H	ArSO ₃ ⁻	- 6.5	H ₂ O	HO-	15.
+OH	°.	- 6	RCH ₂ OH	RCH ₂ O ⁻	16
–Č–OR'	R-C-OR'		R ₂ CH-OH	R2CH-O-	17
Η.			R ₃ C-OH	R ₃ C-O-	17
α—о́+_к′ н	R-O-R'	- 3.5			17
к_о́+_н	R-O-H	- 2	P	Ŷ	20
1 ₃ O ⁺	H ₂ O	- 1.7	R-C-CH3	R—Ċ—CH₂ [−]	
HNO3	NO3	- 1.4	o o	Ŷ	24
HSO₄ ⁻	504 ²⁻	2	RO-C-CH	RO-C-CH2-	24
łF	F-	3.1	R-CH2CN	R-CH-CN	25
ArNH3 ⁺	ArNH ₂	4	н−с≡с−н	H-C=C-	25
RCOOH	RCOO-	5	H ₂	н-	35
H ₂ CO ₃	HCO3-	6.4	NH ₃	NH2-	38
H ₂ S	HS ⁻	7	Ph-CH	Ph-CH2	40
ArSH	Ars-	7	A H		
	, сна сна сна	9			43
сн, сн	3 СН <u>3</u> СН <u>3</u> СН <u>3</u>		CH2=CH2	CH2=CH-	44
			CH4	CH3-	48

Table 6.3 Acidities of molecules and ions commonly encountered in organic chemistry.^a


"pK_a values from J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, New York, 1992, pp. 250–252. Abbreviations: Ar = aryl; Ph = phenyl; R = alkyl.

http://classes.uleth.ca/200603/chem2500a/sorrtd.pka.jpg

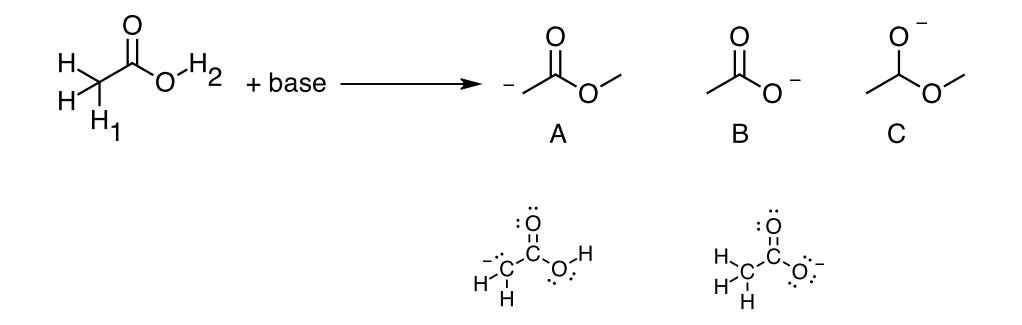
Acids and Bases


Objective: determine relative acid strength

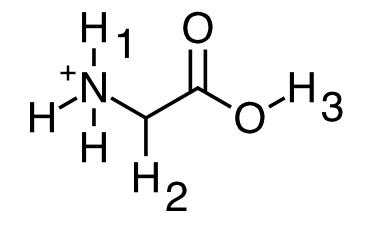
a. Rank the following compounds in order of acid strength.

b. Which of the above compound(s) behave like a base?

Acetic acid is an acid with 4 H's. Which H is acidic? See pK_a table.

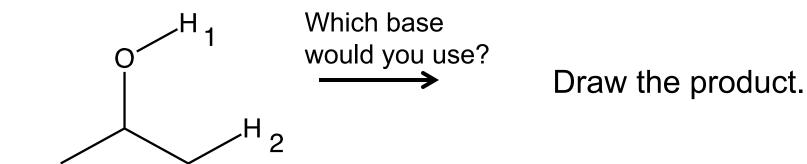

 pK_a of $H_1 ≈$

 pK_a of H_2 ≈


Acids and Bases

Objective: determine the conjugate base of an acid.

What is the conjugate base of CH₃COOH?



Amino acids have at least 2 acidic H's. Which H is the most acidic, H_1 or H_2 or H_3 ? Use pK_a table to estimate acid strength.

 $pK_a \text{ of } H_1 \approx pK_a \text{ of } H_2 \approx pK_a \text{ of } H_3 \approx$

Rubbing alcohol reacts with a base. Which H reacts? In other words, which H is more acidic, H_1 or H_2 ? Use pK_a table to estimate acid strength.

 pK_a of $H_1 ≈$

 pK_a of $H_2 ≈$

1. For a strong acid, K_a is big and pK_a is _____.

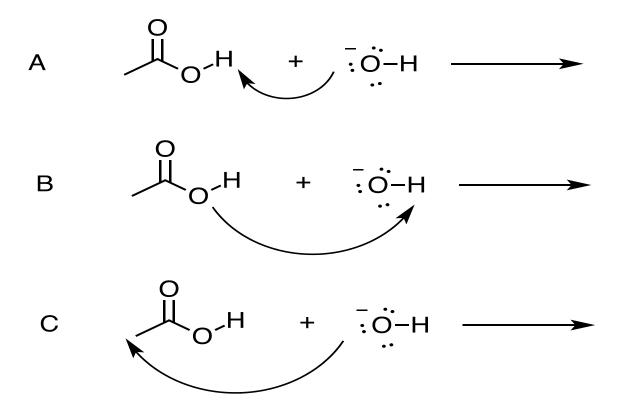

For a weak acid, K_a is _____ and pK_a is big.

2. a. Rank the following acids in order of strength:

HCI, H₂O, acetic acid, ethanol, ethane, ethylene.

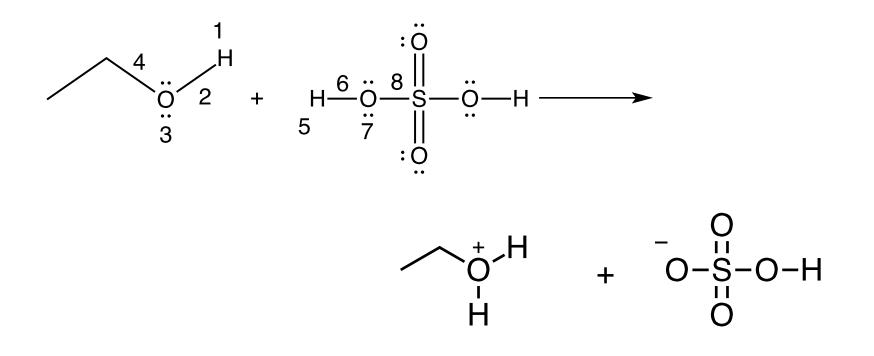
b. Which acid in part a reacts with ammonia (pK_a of $NH_4^+ = 9.3$)?

c. Is the conjugate base of a strong acid strong or weak?

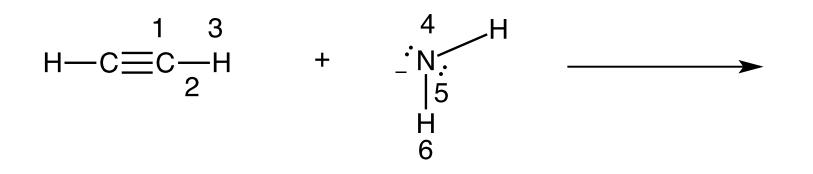


- 1. Lone pair on O forms σ bond to H
- 2. Too many bonds on H so H-Cl σ bond breaks to form lone pair on Cl

Acids and Bases

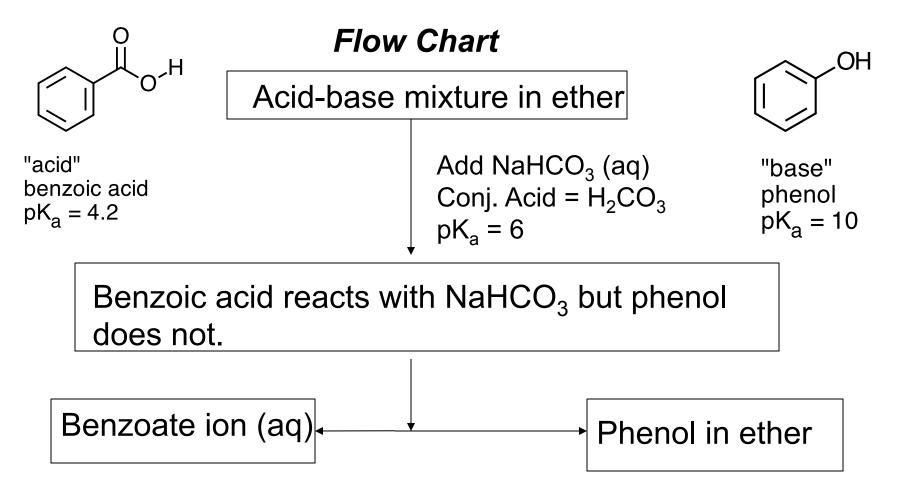

Objective: use curved arrows to show bonds breaking and forming in a reaction.

CH₃COOH reacts with OH⁻ to form CH₃COO⁻ and H₂O. Which curved arrow shows this reaction? Then, draw the products of the reaction.


Objective: use curved arrows to show bonds breaking and forming in a reaction Draw the product(s) of the following reaction.

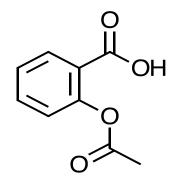
Use numbers to represent curved arrows to show bonds breaking and forming.

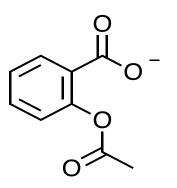
Objective: use curved arrows to show bonds breaking and forming in a reaction Draw the product(s) of the following reaction.


Use numbers to represent curved arrows to show bonds breaking and forming.

More practice: Klein, Problem 3.44

Application of Acids, Bases, pKa


Lab 2: Use Acid-base Reaction to Separate an Acid-Base Mixture

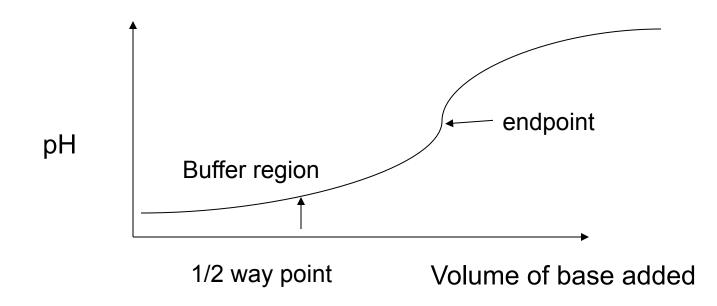


Ether and water are immiscible.

How do you convert benzoate back to benzoic acid?

<u>Application</u>: Use pK_a To Predict Charge at a Specific pH (see Lab 2)

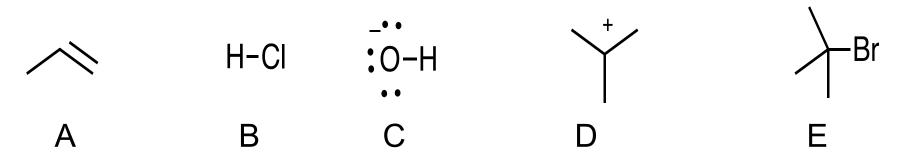
aspirin (acid) $pK_a = 3$ charge = 0


conjugate base of aspirin charge = -1

In stomach (pH 2), aspirin charge = _____ In blood (pH 7.4), aspirin charge = ____

 $pK_a = 9.6$ O H_3N OH $pK_a = 2.3$

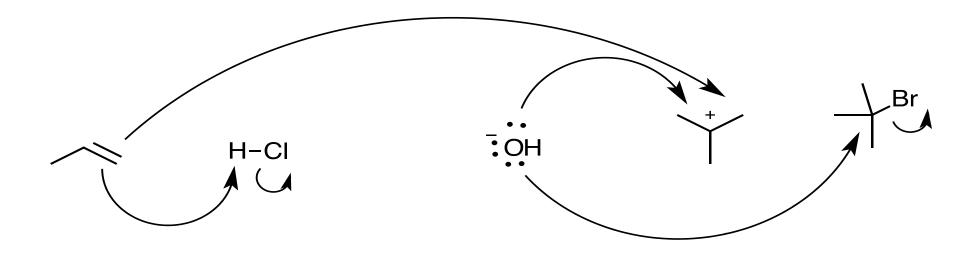
glycine charges = +1, 0, -1 depending on pH In stomach (pH 2), glycine charge = _____ In blood (pH 7.4), glycine charge = _____ **<u>Application</u>**: Use pK_a To Predict Charge at a Specific pH


At pH = $pK_a ===>$ equal [] of acid and conjugate base At pH > $pK_a ===>$ more conjugate base than acid At pH < $pK_a ===>$ more acid than conjugate base

Lewis base	Lewis acid		
Electron pair donor	Electron pair acceptor, e.g., H ⁺		
(-) charge	(+) charge		
(-) pole (δ-)	(+) pole (δ+)		
Nucleophile (Nu:⁻)	Electrophile (E ⁺)		
Electron Source	Electron Sink		
Lone pair, e.g., OH-	Electron deficient species		
π bond	Less EN atom in polar bond		

"Curved arrow" starts at e⁻ pair donor and ends at e⁻ pair acceptor.

Identify each compound as a Lewis acid or Lewis base.


Lewis acids (*Electrophiles*): HCI, $(CH_3)_3C^+$, C bonded to Br Lewis bases (*Nucleophiles*): pi bond, OH⁻ lone pair

Use curved arrows to show bonds breaking and forming ==> show how reactants form products. Follow Bonding and

Structure Rules.

Curved arrow starts at Nucleophile and ends at Electrophile.

Draw the product of each reaction (4 total).

More practice: Klein, Problem 3.39