Objective 13

Apply Reactivity Principles to Electrophilic Addition Reactions 2: Alkynes Identify structural features (pi bond) and electrophiles Use curved arrows to predict product

Alkynes Are Found in Natural Products

Over 1000 natural products contain carbon-carbon triple bonds. (see Carey, "Organic Chemistry", 8th ed., p. 361) **Polyacetylenes in Ginseng root:** panaxynol, ginsenoyne-A, panaxydol, 10methoxy heptadeca-1-ene-4, 6-dyne-3, 9-diol, (3R, 9R, 10R)-panaxytriol, panaxyne, and ginsenoyne-C.

http://cen.acs.org/articles/89/i34/Ginseng-Compound-Curbs-Chemo-Effects.html 8/22/11, CEN, p. 39 Ginseng Compound Curbs Chemo Effects

significantly alleviates the weight loss and nerve damage associated with cancer treatments in mice http://cen.acs.org/articles/90/i7/Behind-Mushroom-Scourge.html 2/13/12, CEN, p. 41 "Behind A Mushroom Scourge: Scientists search for the compounds responsible for unexplained deaths"

The deadly mushroom *Trogia venenata* Zhu L. Yang may have claimed hundreds of lives.

Acetylene is Prepared by 3 Industrial Methods

http://www.enotes.com/acetylene-reference/acetylene

- 1. Thermal Cracking of Natural Gas (Methane) 2 CH₄ -- 1500°C -- > C_2H_2 + 3 H₂
- 2. Dehydrogenation of ethylene:

 $H_2C=CH_2 -- heat --> C_2H_2 + H_2$

3. From Lime and Coke: CaO + 3 C \rightarrow CaC₂ + CO CaC₂ + 2 H₂O -- 2000°C -- > Ca(OH)₂ + C₂H₂

Acetylene is Used:

1. Welding (combustion of oxyacetylene flame = 3300°C; hottest burning fuel gas).

2. $C_2H_2 \longrightarrow C_2H_4 \longrightarrow Plastics$

3. A Starting Material To Make Many Organic Compounds Reppe Chemistry (<u>http://en.wikipedia.org/wiki/Acetylene</u>) C₂H₂ ---> vinyl compounds, acrylic acid/ester

Alkynes Have 2 π Bonds and Act Like Alkenes

Functional group/Bonding/Structure/Reactivity:

<u>Reactions</u>:

<u>Acid-Base Reaction</u>: Ethane, Ethylene, Acetylene can lose a H⁺ Why is C_2H_2 the strongest acid? (<u>Hint</u>: see conjugate base stability)

Addition Reaction: Alkynes are More Reactive than Alkenes

<u>Alkyne</u> π Bond is more Nucleophilic than <u>Alkene</u> π Bond. Why?

Alkynes Have 2 π Bonds and Act Like Alkenes

Functional group/Bonding/Structure/Reactivity:

Compare **<u>ethane</u>** to **<u>ethylene</u>** to <u>**acetylene**</u>. Longest carbon-carbon bond?

(i) ethane (ii) ethylene (iii) acetylene

Hybridization at each C?

ethane	(a) sp	(b) sp²	(c) sp ³
ethylene	(d) sp	(e) sp²	(f) sp ³
acetylene	(g) sp	(h) sp²	(i) sp ³

Alkynes are Used as Starting Materials to Make Many Compounds Alkyne Addition Reactions Are Similar to Alkene Addition Reactions

 $A-B = H_2$, HX, X₂, HOH

Addition of H₂: Hydrogenation of Alkyne Produces an Alkene or Alkane

trans alkene

Carey, 8th ed., #9.25a, b

Addition of HX Produces Alkyl Halide or Dihalide with Excess HX

Carey, 8th ed., #9.25g, h

Addition of X₂ Produces 1, 2-dihaloalkene Is cis or trans alkene formed?

Carey, 8th ed., #9.25i, j

Addition of HOH (H₂SO₄ (aq) and Hg²⁺ catalyst) Produces an Enol

Alkyne Addition *with a twist*:

Enol Tautomerizes into a Ketone

Draw resonance structure of enol.

Carey, 8th ed., #9.25k and 29g

Ozonolysis Produces Carbonyl Compound (C=O) Alkene + O₃ --> Aldehyde/Ketone Alkyne + O₃ --> Acid or CO₂ from terminal alkyne

Use in Synthesis: reduce chain length, make carbonyl

Carey, 8th ed., #9.25I, 29e and f

Alkyne Addition Reactions Are Similar to Alkene Addition Reactions

Predict the product(s) of the following reactions:

Reaction Conditions	Alkene: Propylene	Alkyne: Propyne
H ₂ /catalyst		
НХ		
X ₂		
H₂O/H⁺ catalyst		
O ₃ / H ₂ O		

Ethylene has a pK_a of 44; acetylene has a pK_a of 25. Acetylene is a _____ acid than ethylene; the conjugate base of acetylene is a _____ base than the conjugate base of ethylene.

a. stronger/stronger

b. stronger/weaker

c. weaker/stronger

d. weaker/weaker

Acetylene is a Very Weak Acid Acetylene is a Stronger Acid than Ethylene Acetylide Ion is a Very Strong Nucleophile

<u>Acid-base</u>: Acetylene is <u>Weakly</u> Acidic. pK_a of acetylene = 25 pK_a of ethylene = 44 pK_a of ethane = 50

Which base reacts with acetylene?

Which base reacts with acetylene? Draw the structure of the products of the reaction.

 $a.H_2O$

b.OEt⁻

 $c.NH_2^{-}$

The Acetylide Ion (HC=C:) is a Very Strong Nu:-

Acetylide ion is used in Synthesis:

Acetylide Ion reacts with R-X in a Substitution Reaction

$$H \longrightarrow H \longrightarrow X \longrightarrow H \longrightarrow H \longrightarrow X^{-}$$

Starting from acetylene, suggest a synthesis of 2-butyne.

The Acetylide Ion is Used to Make C-C Bonds

Synthesis: Acetylide as an Alkylating Agent to Lengthen Chain

Starting from acetylene, suggest a synthesis of 2-butyne.

Acetylide ion undergoes substitution with: (i) 1° RX (ii) 2° RX (iii) 3° RX

What is the mechanism type? (iv) $S_N 1$ (v) $S_N 2$

The Acetylide Ion is Used to Make C-C Bonds

Synthesis: Acetylide as an Alkylating Agent to Lengthen Chain

Acetylide reacts with 1° RX via S_N2 mechanism.

Use CH_3OH instead of CH_3I . Will same product form? Give reasons.

Carey, "Organic Chemistry", 8th ed., #9.25d and e, 29a and d.

Making C-C Bonds Is Important in Synthesis

- 1. Acetylide ion: HCC:⁻ + R-X \rightarrow
- 1912 Nobel Prize in Chemistry: Grignard reagent (Chem 12B) RMgX + aldehyde/ketone →
- 3. 2010 Nobel Prize in Chemistry: Pd catalyzed cross coupling

Chemical and Engineering News, 10/11/10, p. 7.

Acetylide Ion is Used to Form C-C Bonds (Lengthen Chain) Alkynes Undergo Addition Reactions

Acetylene or Ethylene is Often used as a Starting Material in Synthesis

<u>Alkynes</u> can be <u>Converted</u> to <u>Alkenes</u> which can be converted to <u>Alkanes</u>

Many Syntheses <u>Start from an Alkene</u> or <u>Go Through an</u> <u>Alkene</u> to make the Target compound (alkene as "hub")

Acetylene is used to <u>Lengthen</u> a Carbon Chain (via Substitution Rxn)

Klein, Ch. 10#53

Alkynes Are Like Alkenes

Alkynes, like Alkenes, are Prepared via *Elimination* Reaction

Alkynes, like Alkenes, undergo Addition Reactions

Alkynes are **Stronger Acids** than Alkenes ===> Acetylene (HC≡CH) + B:⁻ ---> Acetylide ion (HC≡C:⁻)

The Acetylide ion (HC=C:⁻) is a very good Nu:⁻ ===> used in Substitution reactions ===> used to make C-C bonds

Lab: Alkynes are Prepared by an <u>Elimination</u> Reaction from a Dihalide

Elimination Reaction: R-LG + Nu:⁻ --> alkene + Nu-H + LG⁻ What LG is used?

Vicinal dihalide = X on adjacent C Geminal (*"twins"*) dihalide = X on same C Carey, "Organic Chemistry", 8th ed., #9.22a, 29b and c Which method does **not** work to make acetylene?

Add Alkyne Reactions to your Organic Reaction Map <u>Note</u>: *Alkenes are the "hub" to make different groups*

Klein, 1st ed., #10.40 and 41 and 46 and 52 Carey, 8th ed., #9.21, 22b, 23c, 24, 31, 33, 34, 36