Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Skills: Draw structure
IR: match bond type to IR peak
NMR: ID number of non-equivalent H’s, relate peak splitting to number of H’s on adjacent C
MS: ID molecular ion peak = molecular weight

Key ideas:
Given structure, determine # of non-equivalent H’s.
Given structure, determine multiplicity.
Given simple organic compound, draw H NMR spectrum (# of peaks and splitting).
Given NMR, IR, MS spectra, determine structure.
There Are Many Ways To Identify A Substance

It is fairly easy to identify a substance if you are given a few choices.

Objective: Choose an identification method.

You are given a sample of a colorless liquid and told it is either ethanol ($\text{C}_2\text{H}_5\text{OH}$) or rubbing alcohol ($\text{CH}_3\text{CHOHCH}_3$). What method would you use to identify this liquid? Give reasons.

a) IR
b) Boiling point
c) Density
Objective: Choose an Identification method

You are given a sample of a colorless liquid and told it is C₄H₁₀. C₄H₁₀ has two isomers. What method would you use to determine which isomer of C₄H₁₀ you were given? Give reasons.

a) IR
b) Boiling point
c) Density
To Determine the **Structure** of a Compound, IR, NMR, MS, and UV/VIS Are Used

- **IR (Infrared Spectroscopy)** is used to identify **Bond Types** and Functional Groups.
- **NMR (Nuclear Magnetic Resonance Spectroscopy)** is used to identify the **Carbon Skeleton** and the Number of H’s Bonded to C.
- **MS (Mass Spectrometry)** is used to determine the **Molecular Weight** of a Compound => determine chemical formula.
- **UV/VIS (Ultraviolet/Visible Spectroscopy)** is used to study **Conjugated** Systems.
Mass Spectrometry
http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch13/ch13-ms.html

1 inject sample
2 heater to vapourise sample
3 electron beam ionises sample
4 particles accelerated into magnetic field
5 magnetic field separates particles based on mass/charge ratio

ionisation fragmentation
\[\tilde{M} \rightarrow \tilde{M}^+ \rightarrow m_1^+ + m_2^\cdot \]

molecule molecular ion fragment ion
Mass Spectrometry (MS) - the *Molecular Ion (M+•) peak tells you the molecular weight*

Molecular Ion (M+•) peak = peak (often the largest) with highest m/z ratio.

http://www.chemguide.co.uk/analysis/masspec/fragment.html
Which peak is the Molecular Ion peak?
Molecular Weight ==> Chemical Formula

From Chemical Formula ==> determine *Hydrogen Deficiency Index* (HDI) for number of pi bonds or rings

From molecular weight, you can determine the chemical formula of a compound.
E.g., alkane \((C_nH_{2n+2})\) \(MW = 16 + 14 \times (n-1)\)

<table>
<thead>
<tr>
<th>Formula</th>
<th>Treat X the same as H. Ignore O.</th>
<th># of (\pi) bonds or rings or combo = HDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_nH_{2n+2})</td>
<td>0 bonds or rings: alkane</td>
<td></td>
</tr>
<tr>
<td>(C_nH_{2n})</td>
<td>1 bond (alkene) or 1 ring (cycloalkane)</td>
<td></td>
</tr>
<tr>
<td>(C_nH_{2n-2})</td>
<td>2 (\pi) bonds or rings or combo equaling 2</td>
<td></td>
</tr>
<tr>
<td>(C_nH_{2n-4})</td>
<td>3 (\pi) bonds or rings or combo equaling 3</td>
<td></td>
</tr>
<tr>
<td>(C_nH_{2n-6})</td>
<td>4 (\pi) bonds or rings or combo equaling 4</td>
<td></td>
</tr>
</tbody>
</table>
HDI for compounds with O, N, X

Reduce chemical formula to C_xH_y formula:
- Ignore O
- Treat X (F, Cl, Br, I) like H
- For each N, subtract one H

Examples: C_2H_6O reduces to C_2H_6 so HDI = 0.5 (6-6) = 0

C_3H_7Cl reduces to C_3H_8 so HDI = 0

C_2H_7N reduces to C_2H_6 so HDI = 0

HDI = 0.5 (# of H’s in alkane chain - # of H’s in formula)
Use C_nH_{2n+2} to determine # of H’s in alkane chain
Infrared (IR) radiation causes a bond to *vibrate* (stretch/bend)

Bond Types are determined by IR Spectroscopy
Use an IR Correlation Table to Interpret IR Spectra

<table>
<thead>
<tr>
<th>Bond</th>
<th>Base Value, cm<sup>-1</sup></th>
<th>Strength / Shape</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C=O</td>
<td>1715</td>
<td>s, "finger"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exact position depends on type of carbonyl</td>
</tr>
<tr>
<td>2</td>
<td>O-H</td>
<td>3200-600</td>
<td>s, broad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broad due to H bonding</td>
</tr>
<tr>
<td>3</td>
<td>N-H</td>
<td>3500</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Can tell primary from secondary</td>
</tr>
<tr>
<td>4</td>
<td>C-O</td>
<td>1100-1300</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Also check for OH and C=O</td>
</tr>
<tr>
<td>5</td>
<td>C=C</td>
<td>1650</td>
<td>w alkene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>m-s aromatic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkene w due to low polarity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aromatic usually in pairs</td>
</tr>
<tr>
<td>6</td>
<td>C≡C</td>
<td>2150</td>
<td>w, sharp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Most obvious in terminal alkynes</td>
</tr>
<tr>
<td>7</td>
<td>C-H</td>
<td>3000 (stretch)</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As hybridisation of C changes sp<sup>3</sup>-sp<sup>2</sup>-sp, the frequency increases</td>
</tr>
<tr>
<td></td>
<td>1375 and 1450 (bend)</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C≡N</td>
<td>2250</td>
<td>m, sharp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Characteristic since little else around it</td>
</tr>
</tbody>
</table>
Objective: interpret an IR spectrum

When I interpret an IR spectrum, I look at:

3200-3500 cm\(^{-1}\) region ==> O-H bond ==> alcohol or ___

1600-1700 cm\(^{-1}\) region ==> C=O bond ==> aldehyde or ____
 ==> C=C bond ==> alkene

1100-1300 cm\(^{-1}\) region ==> C-O bond ==> ________

I know most organic compounds have C-H bond at around 3000 cm\(^{-1}\).
> 3000 cm\(^{-1}\) ==> alkene, alkyne, or aromatic C-H
< 3000 cm\(^{-1}\) ==> alkyl C-H
The IR spectrum of _____ is shown below. The compound is:

a) Ethanol
b) Butane
c) acetone

http://www.bluffton.edu/~bergerd/classes/cem222/infrared/oxygen.html
Nuclear Magnetic Resonance (NMR) spectroscopy

[Image of a diagram showing a RF (60 MHz) oscillator, an RF detector, and a recorder, with labels indicating 'No magnetic field' and 'With magnetic field']

http://www.avogadro.co.uk/analysis/nmr/nmr.htm
1H and 13C Are The Most Common Nuclei Studied Using NMR

Electrons have spin. So do some nuclei. See Nuclear spin:
NMR basics:
http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch13/ch13-0.html
http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
Doing an NMR experiment:
http://arrhenius.rider.edu:16080/nmr/NMR_tutor/pages/nmr_tutor_home.html

In 1H NMR, look at
1. **Number and Location of signal** (peak) – **equivalent** H’s.
2. **Intensity of peak** relative to other peaks - # of H’s bonded to each C (or other atom)
3. **Multiplicity** (splitting of main peak into multiple peaks) - # of H’s bonded to adjacent C are “coupled”
^1H nmr spectrum shows:

Relative # of equiv H’ s = integration

Splitting of main peak = # of H’ s on adjacent C

Downfield - “deshielded” H’ s
Inductive effect

δ = chemical shift, ppm

Upfield - “shielded” H’ s

http://lsc.ucdavis.edu/~hollieste/jim118A/ProtonNMR.Probs.html
Objective: Determine which H’s are *Equivalent* by Replacing H with X

If the 2 structures are the same, then H’s are equivalent

E.g., Are the H’s in CH₄ equivalent? YES

Which H’s in C₃H₈ are equivalent?

(i) A and B (ii) A and C (iii) B and C
Objective: Given structure, what does the H NMR spectrum look like?

Problem solving method:
(i) Determine the number of equivalent and non-equivalent H’ s (to determine number of peaks and ratio of non-equiv H’ s).
(ii) Determine peak splitting by H’ s on adjacent C (3 bonds away) using (n+1) rule, where n = # of equivalent H’ s on adjacent C.

1. For CH₄,
a. How many equivalent H’ s?
 (i) 1 (ii) 2 (iii) 3 (iv) 4
b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4
c. If 2 or more peaks, what is ratio of non-equivalent H’ s?
d. If 2 or more peaks, what is splitting?

USE ChemDoodle to look at predicted NMR spectrum
A H is affected by a Non-Equivalent H on an Adjacent Carbon

Multiplicity - splitting of main peak into two or more peaks

H_a is 3 bonds away from H_b

H_b affects the shielding (environment) around H_a

H_a Signal (peak) is split into two or more peaks:

\[n + 1 \text{ rule} \]

where n is the number of equivalent H’s coupled to H_a signal
For C_3H_8

http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html

a. How many non-equivalent H’s?
 (i) 1 (ii) 2 (iii) 3 (iv) 4

b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4

c. If 2 or more peaks, what is ratio of non-equivalent H’s?

d. If 2 or more peaks, what is splitting?
For $\text{C}_2\text{H}_5\text{OH}$

http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html

a. How many non-equivalent H’s?
 (i) 1 (ii) 2 (iii) 3 (iv) 4

b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4

c. If 2 or more peaks, what is ratio of non-equivalent H’s?

d. If 2 or more peaks, what is splitting?
For $(\text{CH}_3)_2\text{CO}$

http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html

a. How many non-equivalent H’s?
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 4

b. How many peaks?
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 4

c. If 2 or more peaks, what is ratio of non-equivalent H’s?

d. If 2 or more peaks, what is splitting?
Can H NMR be used to distinguish between Butane \((\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3)\) and isobutane \((\text{CH}_3)_3\text{CH}\)?
Can you use H nmr to distinguish between the following compounds?
Hint: Determine the number of non-equivalent hydrogens.
How many signals (peaks) will you see in a H nmr spectrum?
Given ^1H NMR Spectrum (and chemical formula), Determine Structure

^1H NMR Correlation Table Helps Us Interpret Spectra

Deshielded H
Downfield

Shielded H
Upfield
When I interpret a 1H NMR spectrum, I look at:

Number of peaks ==> tells me how many non-equivalent H’ s
E.g., 2 peaks ==> 2 different types of H’ s

Peak integration ==> tells me ratio of non-equivalent H’ s
E.g., 2:1 ratio ==> 2:1 or 4:2 or 6:3 ratio of the different H’ s

Splitting (multiplicity) of peaks ==> tells me how many H’ s on adjacent C
E.g., Peak is split into a quartet ==> 3 H on adjacent C using (n+1) rule so -CH$_3$ group
Peak is split into a triplet ==> 2 H on adjacent C so -CH$_2$- group

Put the puzzle together so the NMR data fit the structure ==> structure solved!
Given 1H NMR Spectrum (and chemical formula), Determine Structure

C_8H_{18}; 1 peak at $\delta = 0.9$
How many non-equivalent H’ s?

(i) 1 (ii) 2 (iii) 3 (iv) 4

Which structure fits the data?

A
B
C
Given ^1H NMR Spectrum (and chemical formula), Determine Structure

C$_8$H$_{10}$; 3 peaks at $\delta = 1.2$ (triplet, 3 H), $\delta = 2.6$ (quartet, 2 H), $\delta = 7.1$ (broad singlet, 5 H)

How many rings or pi bonds?

(i) 2 (ii) 3 (iii) 4 (iv) 5

Which structure fits data?

A B C
13C NMR is a Little Different Than 1H NMR

In \textbf{13C NMR}, look at:

1. Number and Location of signal (peak) – equivalent C’s.
2. Intensity of peak relative to other peaks
3. Multiplicity – splitting of main peak into multiple peaks

13C NMR Correlation Table

Interpret 13C NMR spectrum: Klein, Ch. 16
Review: Each Characterization Method Gives Different Information

1. a. What information does MS tell you?
 b. What information does IR tell you?
 c. What information does 1H NMR tell you?
 d. What information does 13C NMR tell you?

2. a. What information does the chemical formula tell you?
 b. What method tells you about the chemical formula?

3. a. What method tells you whether a pi bond is present?
 b. Can your method in part 3a tell you whether a ring is present?
 c. Can you method in part 3a tell you whether a methylene (CH_2) group is next to a methyl group? If not, which method gives you this information?
Structure Characterization Often Requires A Combination of IR, NMR, and MS

1. Determine the structure:
 http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch13/ch13-0.html
(i) Use H and C nmr, IR, MS spectra:
(ii) Chemical formula: index of H deficiency
 a. Spectra Problem #1
 b. Interactive Spectroscopy Problem 1

2. Webspectra
 http://www.chem.ucla.edu/~webspectra/
 a. Problem 1
A compound (C₈H₁₀O) has the IR and ¹H NMR spectra data below.

IR:

<table>
<thead>
<tr>
<th>Peak</th>
<th>Wavenumber, cm⁻¹</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3400</td>
<td>Strong, broad</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>Strong</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
<td>Strong</td>
</tr>
</tbody>
</table>

¹H NMR:

<table>
<thead>
<tr>
<th>Chemical Shift, ppm</th>
<th>Intensity</th>
<th>Splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>3</td>
<td>doublet</td>
</tr>
<tr>
<td>4.2</td>
<td>1</td>
<td>singlet</td>
</tr>
<tr>
<td>4.9</td>
<td>1</td>
<td>quartet</td>
</tr>
<tr>
<td>7.5</td>
<td>5</td>
<td>singlet</td>
</tr>
</tbody>
</table>

Draw the structure of this compound.