Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

<u>Skills</u>: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H's, relate peak splitting to number of H's on adjacent C MS: ID molecular ion peak = molecular weight

Key ideas:

Given structure, determine # of non-equivalent H's.

Given structure, determine multiplicity.

Given simple organic compound, draw H NMR spectrum (# of peaks and splitting).

Given NMR, IR, MS spectra, determine structure.

There Are Many Ways To Identify A Substance

It Is Fairly Easy to Identify A Substance If You Are Given A Few Choices

Objective: Choose an Identification method

You are given a sample of a colorless liquid and told it is either ethanol (C_2H_5OH) or rubbing alcohol $CH_3CHOHCH_3$). What method would you use to identify this liquid? Give reasons.

- a) IR
- b) Boiling point
- c) Density

Objective: Choose an Identification method

You are given a sample of a colorless liquid and told it is C_4H_{10} . C_4H_{10} has two isomers. What method would you use to determine which isomer of C_4H_{10} you were given? Give reasons. a) IR b) Boiling point c) Density

To Determine the <u>Structure</u> of a Compound, IR, NMR, MS, and UV/VIS Are Used

• IR (*Infrared Spectroscopy*) Is Used to Identify <u>Bond</u> <u>Types</u> and Functional Groups

- NMR (Nuclear Magnetic Resonance Spectroscopy) Is Used to Identify The <u>Carbon Skeleton</u> and the <u>Number of H's Bonded to C</u>
- MS (*Mass Spectrometry*) Is Used to Determine the <u>Molecular Weight</u> of a Compound ==> determine <u>chemical formula</u>

 UV/VIS (Ultraviolet/Visible Spectroscopy) Is Used to Study <u>Conjugated</u> Systems

Mass Spectrometry

Mass Spectrometry (MS) - the Molecular Ion (M+•) peak tells you the molecular weight

Molecular Ion (M+•) peak = peak (often the largest) with highest m/z ratio.

http://www.chemguide.co.uk/analysis/masspec/fragment.html

Which peak is the Molecular lon peak?

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

Molecular Weight ===> Chemical Formula

From Chemical Formula ==> determine *Hydrogen Deficiency Index* (HDI) for number of pi bonds or rings

From molecular weight, you can determine the chemical formula of a compound.

E.g., alkane $(C_n H_{2n+2})$ MW = 16 + 14 (n-1)

Formula Treat X the same as H. Ignore O.	# of π bonds or rings or combo = HDI
C_nH_{2n+2}	0 bonds or rings: alkane
C _n H _{2n}	1 bond (alkene) or 1 ring (cycloalkane)
C _n H _{2n-2}	2π bonds or rings or combo equaling 2
C _n H _{2n-4}	3π bonds or rings or combo equaling 3
C _n H _{2n-6}	4 π bonds or rings or combo equaling 4

HDI for compounds with O, N, X

Reduce chemical formula to C_xH_y formula:

- Ignore O
- Treat X (F, CI, Br, I) like H
- For each N, subtract one H

Examples: C_2H_6O reduces to C_2H_6 so HDI = 0.5 (6-6) = 0

 C_3H_7CI reduces to C_3H_8 so HDI = 0

 C_2H_7N reduces to C_2H_6 so HDI = 0

HDI = 0.5 (# of H's in alkane chain - # of H's in formula) Use $C_n H_{2n+2}$ to determine # of H's in alkane chain

Infrared (IR) radiation causes a bond to vibrate (stretch/bend)

http://teacher.pas.rochester.edu/PhysicsDemos/Mechanics/MA_ElasticSolids/MA-01/MA-01.html

Bond Types are determined by IR Spectroscopy

Use an IR Correlation Table to Interpret IR Spectra

	Bond	Base Value, cm ⁻¹	Strength / Shape	Comments
1	C=O	1715	s, "finger"	Exact position depends on type of carbonyl
2	O-H	3200-600	s, broad	Broad due to H bonding
3	N-H	3500	m	Can tell primary from secondary
4	C-0	1100-1300	S	Also check for OH and C=O
5	C=C	1650	w alkene m-s aromatic	Alkene w due to low polarity Aromatic usually in pairs
6	C≡C	2150	w, sharp	Most obvious in terminal alkynes
7	С-Н	3000 (stretch) 1375 and 1450 (bend)	s m	As hybridisation of C changes sp ³ - sp ² -sp, the frequency increases
8	C≡N	2250	m, sharp	Characteristic since little else around it

Objective: interpret an IR spectrum

When I interpret an IR spectrum, I look at:

3200-3500 cm⁻¹ region ==> O-H bond ==> alcohol or ____

1600-1700 cm⁻¹ region ==> C=O bond ==> aldehyde or _____ ==> C=C bond ==> alkene

1100-1300 cm⁻¹ region ==> C-O bond ==> ____

I know most organic compounds have C-H bond at around 3000 cm⁻¹.

- > 3000 cm⁻¹ ==> alkene, alkyne, or aromatic C-H
- < 3000 cm⁻¹ ==> alkyl C-H

The IR spectrum of _____ is shown below. The compound is:

- a) Ethanol
- b) Butane
- c) acetone

http://www.bluffton.edu/~bergerd/classes/cem222/infrared/oxygen.html

¹H and ¹³C Are The Most Common Nuclei Studied Using NMR

Electrons have spin. So do some nuclei. See Nuclear spin: http://www.pascal-man.com/periodic-table/periodictable.html NMR basics: http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch13/ch13-0.html http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

Doing an NMR experiment:

http://arrhenius.rider.edu:16080/nmr/NMR_tutor/pages/nmr_tutor_home.html

In ¹<u>H NMR</u>, look at

1. Number and Location of signal (peak) – <u>equivalent</u> H's.

2. *Intensity of peak* relative to other peaks - # of H's bonded to each C (or other atom)

3. *Multiplicity* (splitting of main peak into multiple peaks) - # of H's bonded to adjacent C are "coupled"

¹H nmr spectrum shows:

http://lsc.ucdavis.edu/~holliste/jim118A/ProtonNMR.Probs.html

<u>Objective</u>: Determine which H's are **Equivalent** by Replacing H with X

If the 2 structures are the same, then H's are equivalent E.g., Are the H's in CH_4 equivalent? YES

Objective: Given structure, what does the H NMR spectrum look like?

Problem solving method:

(i) Determine the number of equivalent and non-equivalent H's (to determine number of peaks and ratio of non-equiv H's). (ii) Determine peak splitting by H's on adjacent C (<u>3 bonds away</u>) using (n+1) rule, where n = # of equivalent H's on adjacent C.

1. For CH₄,

a. How many equivalent H's?

(i) 1 (ii) 2 (iii) 3 (iv) 4
b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4
c. If 2 or more peaks, what is ratio of non-equivalent H's?
d. If 2 or more peaks, what is splitting?

USE ChemDoodle to look at predicted NMR spectrum

A H is affected by a Non-Equivalent H on an Adjacent Carbon

Multiplicity - splitting of main peak into two or more peaks

H_b affects the shielding (environment) around H_a

H_a Signal (peak) is split into two or more peaks:

n + 1 rule

where n is the number of equivalent H's coupled to H_a signal

For C₃H₈ <u>http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html</u> a. How many non-equivalent H's? (i) 1 (ii) 2 (iii) 3 (iv) 4

- b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4
- c. If 2 or more peaks, what is ratio of non-equivalent H's?
- d. If 2 or more peaks, what is splitting?

For C_2H_5OH

http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html a. How many non-equivalent H's? (i) 1 (ii) 2 (iii) 3 (iv) 4

- b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4
- c. If 2 or more peaks, what is ratio of non-equivalent H's?
- d. If 2 or more peaks, what is splitting?

For (CH₃)₂CO http://www.muhlenberg.edu/depts/chemistry/chem201nmrexamples.html

a. How many non-equivalent H's? (i) 1 (ii) 2 (iii) 3 (iv) 4

- b. How many peaks? (i) 1 (ii) 2 (iii) 3 (iv) 4
- c. If 2 or more peaks, what is ratio of non-equivalent H's?
- d. If 2 or more peaks, what is splitting?

Can H NMR be used to distinguish between Butane $(CH_3CH_2CH_2CH_3)$ and isobutane $(CH_3)_3CH$?

Can you use H nmr to distinguish between the following compounds?

Hint: Determine the number of non-equivalent hydrogens.

How many signals (peaks) will you see in a H nmr spectrum?

<u>Given ¹H NMR Spectrum (and chemical formula)</u>, <u>Determine Structure</u> ¹H NMR Correlation Table Helps Us Interpret Spectra

Downfield

Shielded H Upfield When I interpret a ¹H NMR spectrum, I look at:

Number of peaks ==> tells me how many non-equivalent H's E.g., 2 peaks ==> 2 different types of H's

Peak integration ==> tells me ratio of non-equivalent H's E.g., 2:1 ratio ==> 2:1 or 4:2 or 6:3 ratio of the different H's

Splitting (multiplicity) **of peaks** ==> tells me how many H's on adjacent C

E.g., Peak is split into a quartet ==> 3 H on adjacent C using (n+1) rule so $-CH_3$ group Peak is split into a triplet ==> 2 H on adjacent C so $-CH_2$ group

Put the puzzle together so the NMR data fit the structure ==> structure solved!

<u>Given ¹H NMR Spectrum (and chemical formula)</u>, <u>Determine Structure</u>

C₈H₁₈; 1 peak at $\delta = 0.9$ How many non-equivalent H' s? (i) 1 (ii) 2 (iii) 3 (iv) 4 Which structure fits the data?

<u>Given ¹H NMR Spectrum (and chemical formula)</u>, <u>Determine Structure</u>

 C_8H_{10} ; 3 peaks at δ = 1.2 (triplet, 3 H), δ = 2.6 (quartet, 2 H), δ = 7.1 (broad singlet, 5 H) How many rings or pi bonds? (i) 2 (ii) 3 (iii) 4 (iv) 5 Which structure fits data?

¹³C NMR is a Little <u>Different</u> Than ¹H NMR

In <u>13C NMR</u>, look at

- Number and Location of signal (peak) equivalent C's.
- 2. Intensity of peak relative to other peaks
- 3. Multiplicity splitting of main peak into multiple peaks ¹³C NMR Correlation Table

Interpret ¹³C NMR spectrum: Klein, Ch. 16

Review: Each Characterization Method Gives Different Information

a. What information does MS tell you?
 b. What information does IR tell you?
 c. What information does ¹H NMR tell you?
 d. What information does ¹³C NMR tell you?

2. a. What information does the chemical formula tell you?b. What method tells you about the chemical formula?

3. a. What method tells you whether a pi bond is present?b. Can your method in part 3a tell you whether a ring is present?

c. Can you method in part 3a tell you whether a methylene (CH_2) group is next to a methyl group? If not, which method gives you this information?

Structure Characterization Often Requires A Combination of IR, NMR, and MS

1. Determine the structure:

http://www.chem.ucalgary.ca/courses/351/ Carey5th/Ch13/ch13-0.html

(i) Use H and C nmr, IR, MS spectra:

- (ii) Chemical formula: index of H deficiency
- a. Spectra Problem #1
- b. Interactive Spectroscopy Problem 1
- 2. Webspectra

http://www.chem.ucla.edu/~webspectra/

a. Problem 1

A compound ($C_8H_{10}O$) has the IR and ¹H NMR spectra data below.

IR:	Peak	Wavenumber, cm ⁻¹	
	1	3400	Strong, broad
	2	3000	Strong
	3	1100	Strong

¹ H NMR:	Chemical Shift, ppm	Intensity	Splitting
	1.6	3	doublet
	4.2	1	singlet
	4.9	1	quartet
	7.5	5	singlet

Draw the structure of this compound.