Objective 4

Perform mole-mass calculations with compounds and reactions.
Determine chemical formula from elemental analysis (\% composition).
Determine masses of reactants/product from mass of products/reactants in chemical reaction.

How Many Pennies Are In That Jar?

Hint: Counting By Weighing Convert mass ------> \# of pennies What is the conversion factor?

I may have high blood pressure. Maybe I should watch my diet. But I love salt. How much sodium is in 1 teaspoon of salt?

Hint: Convert tsp $\mathrm{NaCl} \rightarrow$ mass of Na
Answer: approx. 2.3 g Na

Objective: Calculate Moles From Mass
 (Convert mass to moles)

You measure 2 g of H . How many moles of H are present?

You measure 16 g of O . How many moles of O are present?

You measure 18 g of $\mathrm{H}_{2} \mathrm{O}$. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are present?

Think: What is the Conversion Factor?

Counting by Weighing:

Scientist do not deal with 1 or 2 or 10 atoms but alot of atoms.
We can determine the number of atoms/molecules/ions or moles (1 mole $=6.02 \times 10^{23}=$ Avogadro's $\#=$ Chemist's dozen) of a substance by knowing the mass of one mole (molar mass) and measuring its total mass.

Molar mass - see chem formula and atomic weight in Periodic Table

$$
\text { molar mass }=\frac{\text { mass }}{\text { moles }} \quad \text { or moles }=\frac{\text { mass }}{\text { molar mass }}
$$

Use Molar Mass as a Conversion Factor

Counting by Weighing:

$$
\text { molar mass }=\frac{\text { mass }}{\text { moles }} \quad \text { or moles }=\frac{\text { mass }}{\text { molar mass }}
$$

You measure 2 g of $\mathrm{H}, 16 \mathrm{~g}$ of $\mathrm{O}, 18 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ How many moles of each substance are present?

For $\mathrm{H}:$ molar mass $=1 \mathrm{~g} / \mathrm{mole}$ so moles $=2 \mathrm{~g} /(1 \mathrm{~g} / \mathrm{mole})=2$ moles.
For O: molar mass $=16 \mathrm{~g} / \mathrm{mole}$ so $\mathrm{moles}=16 \mathrm{~g} /(16 \mathrm{~g} / \mathrm{mole})=1$ moles.
For $\mathrm{H}_{2} \mathrm{O}$: molar mass $=18 \mathrm{~g} / \mathrm{mole}$ so moles $=18 \mathrm{~g} /(18 \mathrm{~g} / \mathrm{mole})=1 \mathrm{moles}$.
Think: Use Molar Mass as a Conversion Factor

Water is Everywhere!

Person consumes 2×10^{6} gallons of water per year Plants are 95% water Fish are 80% water Humans are 60\% water

97\% of water is a salt solution Less than 1\% of water is fresh water we can use. Most of the water is locked up in the polar ice caps and glaciers. Ref: World of Chemistry video, "Water"

What Is The Uncertainty In Each Measurement?

What is your "Water Footprint"?
http://www.waterfootprint.org
1 apple $=125$ liters of water
1 glass of wine $=110$ liters of water

Objective: Calculate Moles From Mass

How many moles of H are in 1 drop of water?

1 drop of water $=0.05 \mathrm{ml}$

http://www.wilpf.org/node/735

How many moles of $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}$, and O are in 1 drop of water?

1 drop of water $=0.05 \mathrm{ml}$
Convert from ml to g using density of water ($1 \mathrm{~g} / \mathrm{ml}$)

So $0.05 \mathrm{ml}=0.05 \mathrm{~g}$
Convert g to moles using molar mass
0.05 g of water $/(18 \mathrm{~g} / \mathrm{mole})=0.003$ moles of water

Convert moles of water to moles of H using \qquad .

Convert moles of water to moles of O using \qquad .

Salt helps maintain the balance of fluids in our body. The RDA of sodium is $2,300 \mathrm{mg} /$ day. How many tsp of salt is equivalent to $2,300 \mathrm{mg}$ of sodium?
(1 tsp salt $=5.7 \mathrm{~g}$ salt)

Think: Conversions
Answer: approx. 1 tsp

The Top 10 Chemicals Produced in the U.S.

$\left.\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { 2000 } \\ \text { RANK } \\ \text { (by } \\ \text { mass) }\end{array} & \text { CHEMICAL } & \begin{array}{l}2000 \\ \text { PRODUCT } \\ \text { ION } \\ \text { (in } 10^{9} \mathrm{~kg} \text {) }\end{array} & \text { FORMULA } & \begin{array}{l}\text { Element or } \\ \text { Compound? } \\ \text { Element/ } \\ \text { Compound } \\ \text { Type }\end{array}\end{array} \begin{array}{l}\text { PRODUCT- } \\ \text { ION } \\ \text { (in moles) }\end{array}\right) \begin{array}{l}\text { RANK } \\ \text { (by } \\ \text { moles) }\end{array}\right]$

Application of Mass to Moles Conversion
 Objective: Determine Chemical Formula of a Compound from \% Composition
 What is the \% composition (\% H by mass and \%O by mass) of $\mathrm{H}_{2} \mathrm{O}$?

Elemental analysis experiment: $11 \% \mathrm{H}$ by mass and $89 \% \mathrm{O}$ by mass. What is the chemical formula of this compound?

Application of Mass to Moles Conversion
 Objective: Determine Chemical Formula of a Compound from

 \% CompositionWhat is the \% composition (\% H by mass and \%O by mass) of $\mathrm{H}_{2} \mathrm{O}$?
Solution:
(remember: subscripts represent \qquad
2 moles $\mathrm{H} x(1 \mathrm{~g} \mathrm{H} /$ mole H$)=2 \mathrm{~g} \mathrm{H}$
1 mole $\mathrm{O} \times(16 \mathrm{~g} \mathrm{O} / \mathrm{mole} \mathrm{O})=16 \mathrm{~g} \mathrm{O}$
Total Mass $=2 \mathrm{~g}+16 \mathrm{~g}=18 \mathrm{~g} \quad$ (What does 18 g represent?)
$\% \mathrm{H}=$ (mass of H/total mass) $\times 100=\left(2 \mathrm{~g} \mathrm{H} / 18 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right) \times 100=11 \% \mathrm{H}$
$\% \mathrm{O}=($ mass of O/total mass $) \times 100=\left(16 \mathrm{~g} \mathrm{O} / 18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right) \times 100=89 \% \mathrm{O}$
Elemental analysis experiment: $11 \% \mathrm{H}$ by mass and $89 \% \mathrm{O}$ by mass.
What is the chemical formula of this compound?
Solution: (work above example backwards)
$11 \% \mathrm{H}=11 \mathrm{~g} \mathrm{H} x(1 \mathrm{~mole} \mathrm{H} / 1 \mathrm{~g} \mathrm{H})=11$ moles H
$89 \% \mathrm{O}=89 \mathrm{~g} \mathrm{O} \times(1 \mathrm{~mole} \mathrm{O} / 16 \mathrm{~g} \mathrm{O})=5.55$ moles O
Chemical Formula $=\mathrm{H}_{11} \mathrm{O}_{5.5}$.
What's wrong with this formula?

Elemental analysis shows $5.9 \% \mathrm{H}$ and $94.1 \% \mathrm{O}$. Is this compound water? If not, what is the chemical formula of this compound?

http://180.211.114.59:1111/econtent/basic-chemistry-II/characterization.php

Fertilizers contain nitrogen, phosphorus, and potassium (NPK).
See http://scifun.chem.wisc.edu/CHEMWEEK/PDF/Agricultural_Fertilizers.pdf
Analysis of a fertilizer material gives a \% composition of 13.9\% $\mathrm{N}, 38.6 \% \mathrm{~K}$, and 47.5% O. Determine the chemical formula and give the chemical name of this compound. See Practice Problems, Question 6a.

Ethylene glycol is a sweet smelling and sweet tasting liquid used in antifreeze in the cooling system in cars. Elemental analysis of ethylene glycol gives $38.7 \% \mathrm{C}, 9.7 \% \mathrm{H}$, and 51.6% O. The molar mass of ethylene glycol is $62 \mathrm{~g} / \mathrm{mole}$. What is the chemical formula of ethylene glycol?

See Practice Problems, Question 8.

Hemoglobin is the oxygen carrier found in red blood cells in mammals. The molecular weight of hemoglobin is 64,500 . If hemoglobin contains 0.35% iron by mass, how many iron atoms are in one hemoglobin molecule?
http://fmss12ucheme.wordpress.com/2013/05/06/hemoglobin/
Sylvia S.Mader, Inquiry into Life, 8 th edition. Copyright © 1997 The McGraw-Hill Companies, Inc. All rights reserved
Hemoglobin Molecule

What are Moles Good for?

Elements:
metals and non-metals

Compounds:
ionic and molecular

Counting by weighing: Mass <--> Moles

Conversion Factor: Molar mass - see Periodic Table
Compounds:
Chemical Formula - subscripts represent Moles
Molar mass
\% composition
Reactions: predict how much reactants react and products produced

Very Common Chemical Reaction:

Light, Tasty Biscuits
Sift together 2 cups all-purpose flour, $21 / 2$ teaspoons baking powder and $1 / 2$ teaspoon salt. Cut in $1 / 3$ cup shortening with fork until mixture resembles coarse corn meal. Add $3 / 4$ cup of milk and blend lightly with fork until flour is moistened and dough pulls away from sides of bowl. Turn out on lightly floured board. Knead lightly (30 seconds) and roll $3 / 4$ inch thick. Place on lightly greased pan and brush tops of biscuits with butter or margarine. Bake at 475° (very hot oven) for 12 to 15 minutes.

Conversions:
flour
baking powder 3/4 cup milk
$1 / 4$ cup $=30 \mathrm{~g}$
$1 / 4$ teaspoon $=1.1 \mathrm{~g}$
1 cup $=240 \mathrm{ml}=240 \mathrm{~g}$ (assume density $=$ $1 \mathrm{~g} / \mathrm{ml}$)

I'm concerned about the earth.

http://www.freepik.com/free-photos-vectors/earth

http://www.chemistryland.com/CHM107Lab/ Exp02 Exhaust/Lab2Exp2Exhaust.html

How much carbon dioxide does my car make?

A chemical reaction is represented by a chemical equation. When a chemical equation is balanced, the law is obeyed. The coefficients represent \qquad .

Example:
1 car body $(\mathrm{B})+4$ wheels (W) make 1 car $\left(\mathrm{BW}_{4}\right)$
$1 B+4 W$--> $1 \mathrm{BW}_{4}$
The \# of atoms of each element is the same on each side of the equation
If Ford wants to make 500,000 cars next month, how many wheels are needed?

$$
500,000 \mathrm{BW}_{4} \times \frac{4 \mathrm{~W}}{1 \mathrm{BW}_{4}}=2,000,000 \mathrm{~W}
$$

Conversion Factor $=$ coefficients in balanced chemical equation

A chemical reaction is represented by a chemical equation. When a chemical equation is balanced, the ___ law is obeyed. The coefficients represent \qquad .

Example:
1 torso $(T)+1$ head $(H)+2$ arms $(A)+2$ legs (L) make
1 body ($\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}$)
$1 \mathrm{~T}+1 \mathrm{H}+2 \mathrm{~A}+2 \mathrm{~L}-->\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}$
The \# of atoms of each element is the same on each side of the equation
Dr. Frankenstein has 10 arms. How many Frankies can he make?

Conversion Factor $=$?

A chemical reaction is represented by a chemical equation.

 When a chemical equation is balanced, the law is obeyed. The coefficients represent \qquad .
Example:

2 moles of H_{2} reacts with 1 mole of O_{2} to produce 2 moles of $\mathrm{H}_{2} \mathrm{O}$

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2}-->2 \mathrm{H}_{2} \mathrm{O}
$$

The \# of atoms of each element is the same on each side of the equation.
If you burn 10 moles of H_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced?

If 450 moles of O_{2} are available, how many moles of H_{2} can burn?

Hydrogen - Fuel of the 21st Century?

http://www.keepbanderabeautiful.org/hydrogen.html

Usually, you know the mass. Use MASS to MOLES in a Chemical Reaction to Predict (calculate) the Amounts of Reactants and Products

You did this in CHM 22 lab!
10 g of H_{2} reacts with O_{2} to produce $\mathrm{H}_{2} \mathrm{O}$. Calculate the mass of O_{2} that reacts.
a. 5 g
b. 10 g
c. 40 g
d. 80 g
e. 90 g

Objective: Use MASS to MOLES in a Chemical Reaction to Predict (calculate) the Amounts of Reactants and Products

10 g of H_{2} reacts with O_{2} to produce $\mathrm{H}_{2} \mathrm{O}$.
Calculate the mass of O_{2} that reacts.
Step 1. balance chemical equation: $2 \mathrm{H}_{2}+\mathrm{O}_{2}-->2 \mathrm{H}_{2} \mathrm{O}$
Step 2. given the mass of one reactant or product, calculate moles:

$$
10 \mathrm{~g} \mathrm{H}_{2} \times\left(_\right)=\ldots \text { moles } \mathrm{H}_{2}
$$

Step 3. Convert moles from Step 2 to moles of another reactant or product. The Coefficients tell us \qquad and the RATIO in \qquad of reactants to products.

$$
\ldots \text { moles } \mathrm{H}_{2} \times \frac{1 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{H}_{2}}=\ldots \text { moles } \mathrm{O}_{2}
$$

Step 4. Convert moles in Step 3 to mass:

$$
\text { moles } \mathrm{O}_{2} \times \frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mole} \mathrm{O}_{2}}=\quad \mathrm{g} \mathrm{O}_{2}
$$

Calculate the mass of $\mathrm{H}_{2} \mathrm{O}$ produced.

If you know the mass of one substance, you can calculate (predict) the mass of every other substance.

Step 1. balance chemical equation. Check chem formulas. Check charge.
Step 2. given the mass of one reactant or product, calculate moles:

$$
\ldots \mathrm{g} \underset{\text { Conversion Factor }}{\mathrm{g}}=\mathrm{M}=\mathrm{Molar} \mathrm{Mass}
$$

Step 3. Convert moles from Step 2 to moles of another reactant or product. The Coefficients tell us \qquad and the RATIO in \qquad of reactants to products. moles ___ X \qquad
\qquad
Step 4. Convert moles in Step 3 to mass:

In an experiment, you can calculate the mass of product produced = Theoretical Yield.

But you' Il measure the actual mass of product produced = Actual Yield.
Ideally, you want the $\%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} x 100$
to be \qquad \%.

Some reasons \% yield < \qquad \% are \qquad

Objective: Use mass/moles to calculate yield.
Experiment: 10 g of H_{2} reacts with O_{2} to produce 2.5 g of water.
Calculate the \% yield of water.

Steps:

(i) Calculate the theoretical yield (TY) of water.
(ii) Calculate the \% yield of water.
\% yield =
a. 3%
b. 25%
c. 50%
d. 100%

Objective: Use mass/moles to calculate yield.
Experiment: 10 g of H_{2} reacts with O_{2} to produce 2.5 g of water.
Calculate the \% yield of water.
Steps:
(i) Calculate the theoretical yield (TY) of water.
(ii) Calculate the \% yield of water.

$$
\text { TY of } \mathrm{H}_{2} \mathrm{O}=\frac{10 \mathrm{~g} \mathrm{H}_{2}}{} \times \frac{1{\text { mole } \mathrm{H}_{2}}_{2 \mathrm{~g} \mathrm{H}_{2}}^{2} \times \frac{2 \text { mole } \mathrm{H}_{2} \mathrm{O}}{2{\text { mole } \mathrm{H}_{2}}_{2}^{2}} \times \frac{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{\text { mole } \mathrm{H}_{2} \mathrm{O}}=}{=}
$$

$$
\% \text { yield }=\frac{2.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 100=
$$

A Lot (200 million tons) of Sulfuric Acid is Produced Annually

http://www.mindset.co.za/resources//
0000022611/0000029697/0000029637/default.htm

Objective: Use mass/moles to determine \% yield.

In the first step of the industrial production of sulfuric acid, sulfur, S_{8}, is burned in air to give $\mathrm{SO}_{2}(\mathrm{~g})$.
$\ldots \mathrm{S}_{8}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})----->\quad \mathrm{SO}_{2}(\mathrm{~g})$.

450 g of $\mathrm{S}_{8}(\mathrm{~s})$ is burned in excess air to produce 750 g of SO_{2} (g). Calculate the \% yield of $\mathrm{SO}_{2}(\mathrm{~g})$.

Objective: Use mass/moles and \% yield to determine mass of reactant.

In the first step of the industrial production of sulfuric acid, sulfur, S_{8}, is burned in air to give $\mathrm{SO}_{2}(\mathrm{~g})$.
$\ldots \mathrm{S}_{8}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})----->\quad \mathrm{SO}_{2}(\mathrm{~g})$.

You need to produce 1.0 kg of $\mathrm{SO}_{2}(\mathrm{~g})$ at 75% yield. Calculate the mass of $\mathrm{S}_{8}(\mathrm{~s})$ to produce 1.0 kg of $\mathrm{SO}_{2}(\mathrm{~g})$.

