Objective 1

Scientific measurement - represent uncertainty in measurement and calculations using sig figs, apply dimensional analysis (factor-label method) in conversions and calculations.
"I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the state of Science, whatever the matter may be."

-Lord Kelvin

How Big Is It? Size Is Measured In Different Units

Size of universe Size of earth
Size of a yard stick
Size of cell
Size of H atom
measured in light years
$24,000 \mathrm{mi}$ circumference
$1 \mathrm{yd}=3 \mathrm{ft}=3.3 \mathrm{~m}$
$10 \mu \mathrm{~m}=1 \times 10^{-5} \mathrm{~m}$
$0.3 \mathrm{~A}=3 \times 10^{-10} \mathrm{~m}$

How Hot Is It?

	$\mathrm{T},{ }^{\circ} \mathrm{C}$	T, K	$\mathrm{T},{ }^{\circ} \mathrm{F}$
Center of Sun		1.5×10^{7}	2.7×10^{7}
Gold Melts	1067	1340	1953
(Ray Bradbury)	233		451
Water Boils	100	373	212
Room Temperature	25	298	78
Water Freezes	0	273	32
Dry Ice	-78	205	-108
Liquid Nitrogen boils	-196	77	-321
Helium Freezes	-272.05	0.95	-458
Bose-Einstein Condensate	-273	190 nK	
Absolute Zero	-273	0	-459

Fill in the blanks.

Are We There Yet?

10^{18} seconds	15 billion years	Age of Universe	Astrophysics
10^{14}	3 million years	Pliocene period	Geology
$10^{12}=1 \mathrm{Ts}$	32,000 years	Cro Magnon people	Geology
$10^{10}=10 \mathrm{Gs}$	300 years	White man in North America	
10^{8}	3 years	College degree	
$10^{6}=10 \mathrm{Ms}$	12 days	Fortnight holiday	Chemistry
$10^{4}=10 \mathrm{ks}$	3 hours	Chem 1A lab, GRE Exam	Chemistry
10^{2}	2 min	Soft boiled egg	Chemistry
10^{0}	1 sec	Blink of an eye	Chemistry
$10^{-2}=10 \mathrm{~ms}$			Chemistry
$10^{-4}=0.1 \mathrm{~ms}$		Intersystem crossing	Chemistry
$10^{-6}=1 \mu \mathrm{~s}$		Intersystem crossing	Chemistry
$10^{-8}=10 \mathrm{~ns}$		Internal conversion	Chemistry
$10^{-10}=0.1 \mathrm{~ns}$		Period of vibration of atomic nuclei	Chemistry
$10^{-12}=1 \mathrm{ps}$			Physics
10^{-13}			
$10^{-14}=10 \mathrm{fs}$			

http://mrskopari.weebly.com/ measurement-and-data.html

Every measurement has associated with it.

The number of SIGNIFICANT FIGURES reflects the in the measurement.

Objective: determine sig figs and uncertainty

16.00

represents a number used in chemistry. Include units.
Determine the number of significant figures in the number above.
a. 1
b. 2
C. 3
d. 4
e. 5 f. too many choices

What is the uncertainty in each number?
a. 5
b. ± 10
c. ± 1
d. ± 0.1

$$
\text { e. } \pm 0.01 \quad \text { f. } \pm 0.001
$$

THE LAST SIG DIGIT IS THE UNCERTAIN DIGIT

Each number below represents a number used in chemistry or a conversion. Include units.

Determine the number of significant figures in the following numbers.

What is the uncertainty in each number?
a. 6.02×10^{23}
b. 0.6215
c. How many km are in 26.2 mi?

You want to measure 10 ml of water. Would you use a 100 ml beaker or a 10 ml gc ? How would you report volume using sig figs?

Volume:
a. 10 ml
b. $10 . \mathrm{ml}$
c. 10.0 ml
d. 10.00 ml

HINT: ID digit you know with certainty, guess next digit (the uncertain digit)

The Uncertainty in your Measurement is Determined by the Measuring Device What is the uncertainty in each volume?
ID digit you know with certainty, guess next digit (the uncertain digit)

Each mark $=10 \mathrm{ml}$ Volume reported as _10. ml_

Uncertainty: a. $\pm 10 \mathrm{ml}$
b. $\pm 1 \mathrm{ml}$
c. $\pm 0.1 \mathrm{ml}$
d. $\pm 0.01 \mathrm{ml}$

The Uncertainty of a Measuring Device $=$ Significant Figures

1. You measure 10 ml of a colorless liquid in a 50 ml graduated cylinder. Report the volume using the appropriate number of sig figs.
Hint: each line represents 1 ml
2. You see a volume reported as " 10 ml ". Which volume measuring device was used?
a. 250 ml Beaker
b. 10 ml graduated cylinder
c. 50 ml graduated cylinder

You want to measure 10 ml of water. Would you use a 100 ml beaker or a 10 ml gc ?

a. Which volume measuring device do you think gives a more accurate measurement?
b. Which volume measuring device do you think gives a more precise measurement?

DO THIS IN LAB!

Calibrate - correlate the readings of an instrument with those of a standard to check the instrument's accuracy.

How would you calibrate your finger?
What instrument would you use as your standard?

How would you calibrate a beaker?
What instrument would you use as your standard?

3 cm line on ruler (standard) $=3.5 \mathrm{~cm}$ line on finger Difference $=0.5 \mathrm{~cm}$ (relate to uncertainty) Using Finger gives a length ___ than true length. a. higher
b. lower

3 cm line on ruler (standard) $=3.5 \mathrm{~cm}$ line on finger Using Finger gives a length higher than true length.

Using Finger leads to a Systematic Error and \qquad Accuracy
a. good
b. poor

Calibrate light detector with Hg emission spectrum

GREEN line $=546.1$ nm
http://www.expertsmind.com/
questions/absorbance-
spectrophotometer-30118004.aspx
caffeine

http://hyperphysics.phyastr.gsu.edu/hbase/quantum/ atspect2.html

Blood Glucose $=100 \mathrm{mg} / \mathrm{dL}$ (normal)

Pancreas secretes glucagon, insulin
Blood Glucose test - use a glucose test meter
Glucose -- glucose oxidase ---> gluconic acid (oxidation) ferricyanide -- Gluconic acid ---> ferrocyanide (reduction)

Electric current is produced. Current a [glucose] NEEDS TO BE CALIBRATED!

[^0] http://www.answers.com/Q/How do blood glucose meters work

How Close You Are to the True Value is Accuracy

$$
\% \text { error }=\frac{(\text { true value }- \text { experimental value) }}{\text { true value }} \times 100
$$

How Close Your Results Are to Each Other is Precision

$$
\% \text { difference }=\frac{(\text { highest value }- \text { lowest value) }}{\text { average }} \times 100
$$

Does "scatter" refer to accuracy or precision?

Which set of data shows higher accuracy? Quantify accuracy. Which set of data shows higher precision? Quantify precision.

Density of Water Measurment

Objective: Use Sig Figs in Calculations Rounding Numbers

The Uncertainty in a Measurement (Data) Must Be Reflected in a Calculation (Results)
Use sig figs appropriately when you do calculations.
Add/Subtract = Look at \# of Decimal Places

27.46 g	2 decimal places
$+\quad 5.6 \mathrm{~g}$	1 decimal place
33.1 g	answer has 1 decimal place

Multiply/Divide = Look at \# of Sig Figs
$27.46 \mathrm{~g} \quad 4$ significant figures
$\div 5.6 \mathrm{ml} 2$ significant figures
$4.9 \mathrm{~g} / \mathrm{ml}$ answer has 2 significant figures

Objective: Use Sig Figs In Calculations - Rounding \#'s

Example: Measure mass and volume to calculate density

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Mass measuri ng device	Volume measuri ng device	Mass of beaker, g	Mass of beaker + water, g	Mass of water, g	Volume of water, ml	Density, g / ml
Pan balance	10 ml grad cyl			9.84	10.00	0.984
Pan balance	100 ml beaker			9.84	10.	
Pan balance	50 ml grad cyl	26.78	35.99		10.0	

Calculate density for each trial using sig figs appropriately.

You have a job interview. The interviewer shows you data for a density of water experiment.

Mass of beaker, g	Mass of beaker + water, g	Volume of water, ml	Exp density of water at $23.5^{\circ} \mathrm{C}$	True density of water at $23.5^{\circ} \mathrm{C}$
78.23	87.98	10.0		0.9974

You are asked:
a. Calculate the density of water. Use sig figs appropriately.
b. Calculate \% error and \% difference.
c. Based on the reported data, was a TBB or pan balance used to measure mass? Give reasons.
d. Was a 10 ml transfer pipet, 50 ml graduated cylinder, or 50 ml beaker used to measure volume? Give reasons.
e. How could you have gotten better results?

Objective: Use Sig Figs in Calculations - Rounding Numbers
The Uncertainty in a Measurement (Data) Must Be Reflected in a
Calculation (Results). Use sig figs appropriately when you do calculations.
Add/Subtract = Look at \# of Decimal Places
$\begin{array}{lrl}\text { Mass of } B+W & 87.98 \mathrm{~g} \\ \text { Mass of } B\end{array} \quad \begin{aligned} & \text { 2 decimal places } \\ & \\ & \end{aligned} \quad \begin{aligned} & 78.23 \mathrm{~g} \\ & 9.75 \mathrm{~g}\end{aligned} \quad \begin{aligned} & \text { answer has } 2 \text { decimal places } \\ & \text { ans places }\end{aligned}$
Multiply/Divide = Look at \# of Sig Figs
Mass of water $\quad 9.75 \mathrm{~g} \quad 3$ significant figures
Volume of water $\div 10.0 \mathrm{ml} \quad 3$ significant figures
density $\quad 0.975 \mathrm{~g} / \mathrm{ml}$ answer has 3 sig figures
Subtract: Round to 3 decimal places. Divide: use 2 s.f.

$$
\% \text { error }=\frac{(0.9974-0.975)}{0.9974} \times 100=\frac{0.0224}{0.9974} \times 100=2.2 \%
$$

Divide: 4 sig figs. Answer has 2 sig figs.

Ten nielingran equales me contigran.

Objective: Use Conversion Factors

Density is Used to:

- Identify Substances
- As a Conversion Factor (ratio)

Dimensional analysis (factor-label method). Make sure units cancel out.

$$
\begin{aligned}
\mathrm{A} \times \frac{\mathrm{b}}{\mathrm{~A}} & =\mathrm{b} \\
240 \mathrm{gx} \frac{\mathrm{ml}}{0.79 \mathrm{~g}} & =303.8 \mathrm{ml} \\
240 \mathrm{ml} \times \frac{0.79 \mathrm{~g}}{\mathrm{ml}} & =189.6 \mathrm{~g}
\end{aligned}
$$

You have 240 g of a colorless liquid. This liquid has a density of $0.79 \mathrm{~g} / \mathrm{ml}$.
Calculate the volume in ml of 240 g of this liquid.

$$
\begin{aligned}
& \mathrm{m}=240 \mathrm{~g} \\
& \mathrm{~V}=?
\end{aligned}
$$

You have 1 cup (240 ml) of a colorless liquid. This liquid has a density of $0.79 \mathrm{~g} / \mathrm{ml}$.

a. Is this liquid water? Give reasons.
b. Calculate the mass of 1 cup of this liquid.
http://www.javapackaging.com/ccp0catshow/Plastic Cups.html

DO THIS IN LAB!

Measure the densities of regular soda and diet soda.

Are the densities the same?

If not, what ingredient accounts for the difference? Use difference in densities to calculate mass of this ingredient.

The density of a liquid is $2.1 \mathrm{~g} / \mathrm{ml}$.
To 50.0 ml of this liquid, you add 7.0 g of salt (NaCl). You stir to dissolve the salt. The new volume of this solution is 51.3 ml .

Calculate the density of this solution.

Objective: Use dimensional analysis to Convert from one unit to another

Tums contains CaCO_{3} as its active ingredient How much Ca is in a 550 mg CaCO 3 tablet?

1 tsp of salt (NaCl) has a mass of 6 g . How much sodium is in 1 tsp of salt?

Scientific Measurement involves Error

Making a Measurement Using a Measuring Device
==> uncertainty (error) is shown with significant figures

Look at Lines in Measuring Device
==> the quantity shown in the line is certain ==> guess in between lines ==> uncertain digit

Calculation reflects uncertainty add/subtract ==> look at decimal places multiply/divide ==> look at sig figs

Conversion Factors and Dimensional Analysis ==> convert from one quantity to another
==> conversion factor is a ratio

Equations and graphs tell us which variables are directly proportional or inversely proportional.

a. Which graph is directly proportional? A or
b. For this graph, as x decreases, what happens to y ? increase decrease stay the same

Equations and graphs tell us which variables are directly proportional or inversely proportional.

A big cube and a small cube have the same mass. Which cube is more dense? Why?

A
B

The museum guard proudly told the visitors that the dinosaur bones on display were " $60,000,005$ years old." When asked how the age could be know so precisely, the guard said, "I don't know how they do it, but when I started working here five years ago, they told me that the bones were 60 million years old."

- John McGervey, "Probabilities in Everyday Life," 1986

What is the uncertainty in the age of the dinosaur bones?

The distance from the earth to the moon is 0.25 million miles.

The distance between two H atoms in a H_{2} molecule is $74 \mathrm{pm}\left(1 \mathrm{pm}=1\right.$ picometer $\left.=1 \times 10^{-12} \mathrm{~m}\right)$.

Which measurement has the larger uncertainty?

Very low grade gold ore deposits in Nevada are mined by the use of large steam shovels and trucks that can carry 125 tons of ore. The current price of gold is $\$ 1,160$ per ounce.

If the average grade of a gold deposit is 0.015 ounces of gold per ton of ore, what is the value of gold in one truckload of ore?

Nanoscience Is A Hot Topic. How Big Is A Nanometer?
$1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$
Human hair $=100,000 \mathrm{~nm}$ thick
e. Coli bacteria $=250 \mathrm{~nm}$ wide and $1,000-2,000 \mathrm{~nm}$ long

Visible light wavelength $=400-700 \mathrm{~nm}$
Tobacco mosaic virus capsid $=18 \mathrm{~nm} \times 300 \mathrm{~nm}$
$1 \mathrm{~nm} \cong 20$ Hydrogen atoms $\cong 3$ Uranium atoms
How big is one H atom?

heõalihy living.

Fat Free:

Less than 0.5 g foe
per serving.

Gluten Free:

Does net comoin ghimen, a provein thot is
Does not comon ghan, a provin thot is
naturily found in whect, no, berley, end
oth, or well as a variety of oher addikne
ind tillex

Heart Healthy:

low in fat ond less tian Ig seturased las, 480ing sodiun and
IOw in fot and lach inon Ig scturaved lar, 480 ng sodium and 20 ng cholesterol per standand serving of an ind vidual food. tolowing: vionin A.C. calcium, prokin of liber

High Fiber:

Diels fich in whele gra in foodr contain 51% or
wore whole gran ingrecients by weigh pes
recommended daly awount.

Lactose Free:

Dees not conkin loctese, the noturad sugo found in $\approx i k$.
lockeve free

Lean:

Lew than 16 g tow lat. 4.5 g or lens maturatod tor
and less than 95ing of choleverol per 3-ounce
serving of meat or lish

Carb Conscious

Foods that syppert a
carb corscigus ciet.

Low Fał

less han 3 g fat pet sorving of individual foods.

Low Sodium:

ess thon 140 mg sodium peer sarving of individual foects.

Natural:

Food that does nat estrain ony adaitives such as preservatives or orfificid colving

Organic:

cod produced withous syatheric fertilisers, puntides, or dhamical injections or additron. wach as anibiotic or homines.

Soy:
Hos at loest 6.25 g of sey protoin rom saybeans of soybean beppredicts |soyrilk, roybean oll, toty, say flour, tampoh, mios) and aslow in lat chaceterol and sodiur

Sugar Free:

les than 0.5 g sogar por sarring thit hidwhen hote naturdly occurting sugurs, such os thowe laund in mik ard vogetab os as wel as added segon.

Vegan:

No ingrediestes hove been derived from animds, including meat, fish, dairy, esgs. haney: or anyting made fron tese

Information is also available online: Meijar.com/hoolihyliving

Salt (NaCl) tastes Good RDA of sodium is 1500 mg per day.

http://theshiksa.com/ 2012/06/04/salt-friend-or-foe/

Campbell's new soup label design (right) is aimed at helping busy consumers more easily identify the variety of soup they want.

Campbell's Condensed Tomato Soup has 730 mg of sodium per $1 / 2$ cup. How many cups of Campbell's soup will meet the RDA?

Fat Tastes Better
 2 types: saturated (lard, butter) and unsaturated (veg oil).
 Trans fat is a type of unsaturated fat. RDA of saturated fats is $12 \mathrm{~g} /$ day (for 2,000 Cal/day diet)

Chipotle Chicken Burrito has 980 Cal and 18 g of saturated fat. How many Chipotle Chicken Burritos will meet the RDA?

Fat Tastes Better

2 types: saturated (lard, butter) and unsaturated (veg oil). Trans fat is a type of unsaturated fat.
RDA of saturated fats is $12 \mathrm{~g} /$ day (for $2,000 \mathrm{Cal} /$ day diet)

Starbuck's Venti (20 oz.) White Chocolate Mocha with 2\% milk and whipped cream has 580 Cal and 15 g of saturated fat. How many Starbuck's Venti (20 oz.) White Chocolate Mochas will meet the RDA?

How is a human body made?

$$
2 A+2 L+1 T+1 H---->A_{2} L_{2} T_{1} H_{1}
$$

If you have 13 A , how many H do you need?
What is the conversion factor?
Chemistry Conversions:

$$
2 \mathrm{H}_{2} \mathrm{O}--->2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

You electrolyze 200 moles of water. How much H_{2} is produced?
What is the conversion factor?

Sig Figs Calculation

(quiz question from Fall 2000) The label on Skippy Peanut Butter gives the following nutrition information:
Serving Size $=2$ Tbsp. (32 g)
Amount Per Serving Calories 190 Calories from Fat 140
Total Fat 16 g
Sat. Fat. 3.5 g
Total Carbohydrates 7 g
Dietary Fiber 2 g
Cholesterol 0 mg
Sodium 150 mg

Sugars 3 g
Protein 7 g
Fat $9 \mathrm{cal} / \mathrm{g}$
Carbohydrates $4 \mathrm{cal} / \mathrm{g}$
Protein $4 \mathrm{cal} / \mathrm{g}$
a. Based on the mass of fat, carbohydrates, and protein in one serving listed on the label, calculate the number of calories from fat, the number of calories from carbohydrates, and the number of calories from protein. Note that the label states that fats contain $9 \mathrm{cal} / \mathrm{g}$, carbohydrates and proteins contain $4 \mathrm{cal} / \mathrm{g}$. Show your work.
b. Did the company report the total number of calories correctly on the label using significant figures? Give reasons.
c. Did the company report the calories from fat correctly on the label using significant figures? Give reasons.

[^0]: http://www.diabetesforecast.org/2012/jul/anatomy-of-a-test-strip.html

