"The essence of science is to discover identity in difference." - F.S. Marvin

"You can observe a lot just by watching." -Yogi Berra

Observations are Qualitative and Quantitative

Chemistry is a Quantitative, Predictive Science --> Observations Are Quantified With Numbers (Measurements)

There Are A LOT of Chemicals

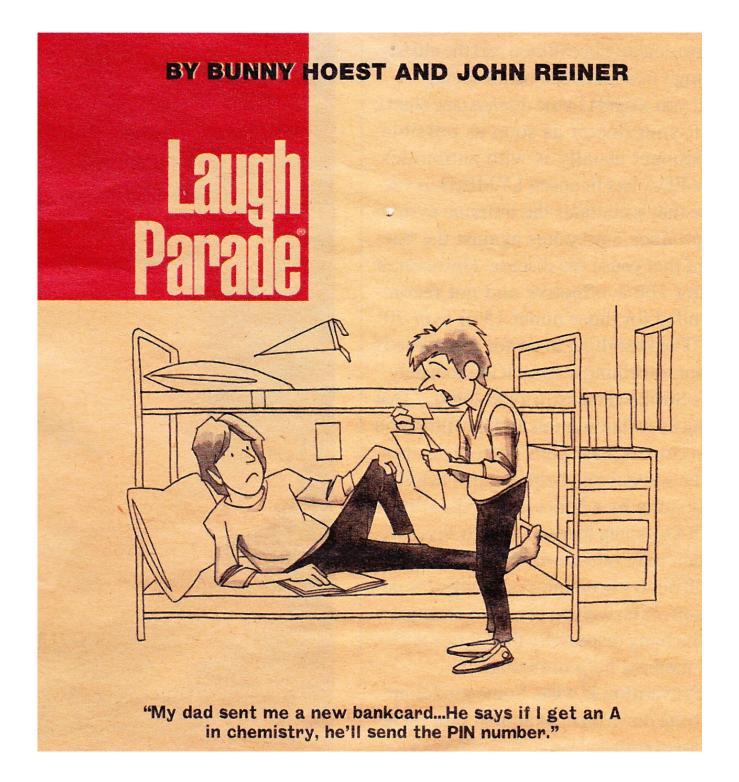
130 million substances (in CAS Registry as of July 2017; 50 millionth substance was registered in 2009)
117 elements, 94 naturally occurring
10¹⁸ to 10²⁰⁰ Possible chemicals (estimated)
Reference: <u>http://www.wisegeek.com/how-many-chemicals-are-there.htm</u>

The most abundant elements in the <u>universe</u> are: hydrogen (74%), helium (24%), oxygen (10%), carbon (0.46%), neon (0.13%), iron (0.1%), and nitrogen (0.1%)

99% of all living organisms and more than 99% of all chemical compounds contain: carbon, hydrogen, oxygen, nitrogen, phosphorous, and sulfur

In what compounds are these elements found?

Chemistry is Big Bucks!


World chemical output = \$3.7 trillion in 2009 U.S. chemical output = \$689 billion in 2009

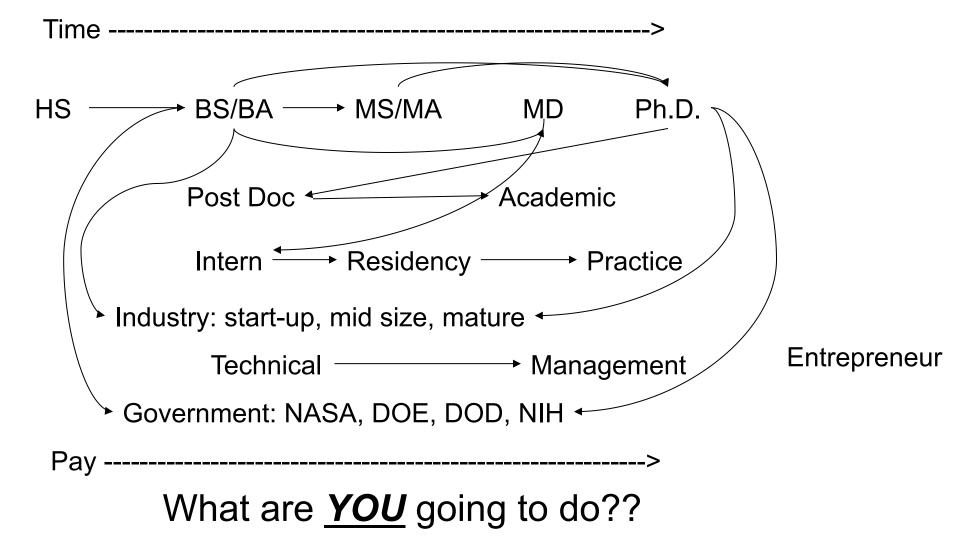
Products:

- 1. Basic chemicals petrochemicals, plastics, fertilizers
- 2. Life science chemicals pharmaceuticals, pesticides
- 3. Specialty chemicals electronic chemicals, industrial gases
- 4. Consumer products soaps, cosmetics

Largest Chemical Companies: World = BASF (Germany) = \$70 billion in 2010 U.S. = Dow Chemical = \$54 billion in 2010 Reference: <u>http://en.wikipedia.org/wiki/Chemical_industry</u>

Most produced chemical in U.S. = sulfuric acid 40 billion kg in 2000

Scientists and Engineers Earn Big Bucks


Field	Starting Salary, \$ in thousands
Chemistry, BS/MS/PhD	\$40/55/76
Chemical Engineering, BS/MS/ PhD	\$66/78/90
BiologicalSciences, BS	\$33
Petroleum Engineering, BS	\$80.8
Computer Engineering, BS	\$64.5
Electrical Engineering, BS	\$61
Mechanical Engineering, BS	\$60.3
Pharmacist	\$60
President of US	\$400

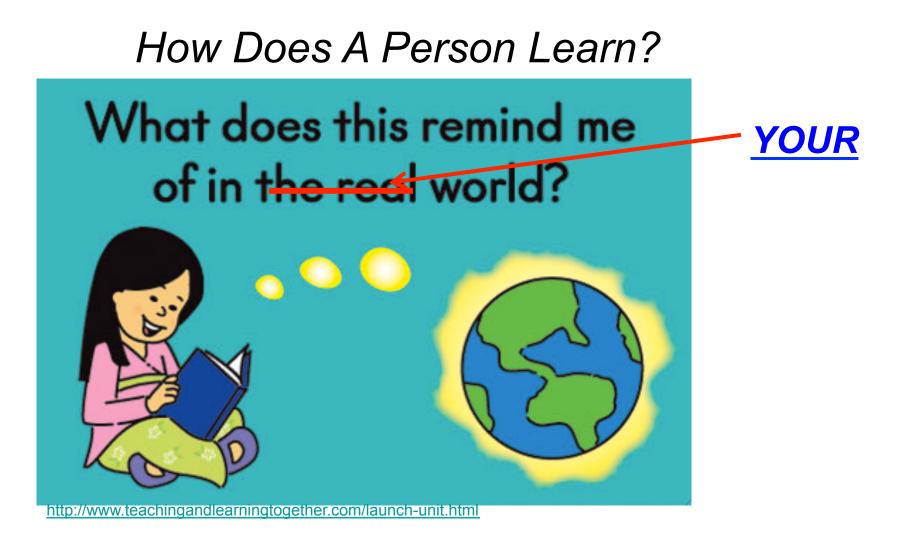
References: C&EN, 6/2/14, p. 28, <u>http://www.bls.gov/oco/ocos047.htm#oes_links</u>, <u>http://www.doe.mtu.edu/news/degree_worth.html</u>, <u>http://www.engineersalary.com/overpaid.asp</u>

22.6 million Scientists and Engineers in 2006

5 million scientists and engineers employed in their field 40% engineers

58% Bachelor's degree, 28% Master's degree, 14% Doctorate

Who said "You can observe a lot just by watching"?


How many substances are there?

What was the U.S. chemical output in \$ in 2009?

What is the starting salary for a biologist with a BS degree?

We Learn:

- 10% of what we read
- of what we hear
- 30% of what we see
- 50% of what we see and hear
- 60% of what we write
- of what we discuss
- of what we experience
- 95% of what we teach

Learning occurs by <u>ACTIVELY MAKING CONNECTIONS</u>. When students interact with other students to clarify, explain, and understand, they are actively building their own minds, making connections, learning.

"You don't really understand something until you can explain it to your grandmother." - Einstein

What is the best way to learn chemistry? a) Sit passively in lecture and stay awake

- b) Re-write your notes
- c) Do experiments in lab and discuss with your lab partner
- d) Discuss and try to teach someone what you learned

CEN, 11/2/09, p. 32 <u>**1609**</u>: Earliest chemistry professorship in Germany Linen aprons, students allowed to ask questions only "*with modesty and without bothering the teacher*."

2015: Education research and Chem 1A class

- Lectures <u>don't</u> work (15 minutes after a fact is presented in a lecture, only 10% of students showed any sign of remembering it)
- Active, not passive, learning
- Put new information to work *immediately* and *repeatedly* (Rule of 7 Marketing adage)
- Work with other students
- Ask questions *a lot!*

Work in the SAME Group of 4 to 6

Form your Group by this <u>Friday</u>:

- 1. your Lab partner
- 2. Student from another lab section (not your grandmother)
- 3. At least 1 person with a mobile device with internet
- Studies show students who work in cooperative GROUPS tend to get BETTER GRADES and enjoy course more than students who work individually and competitively.
- Work in teams in industry
- Build and develop social skills (introduce self, listen, encourage, check, accountable)

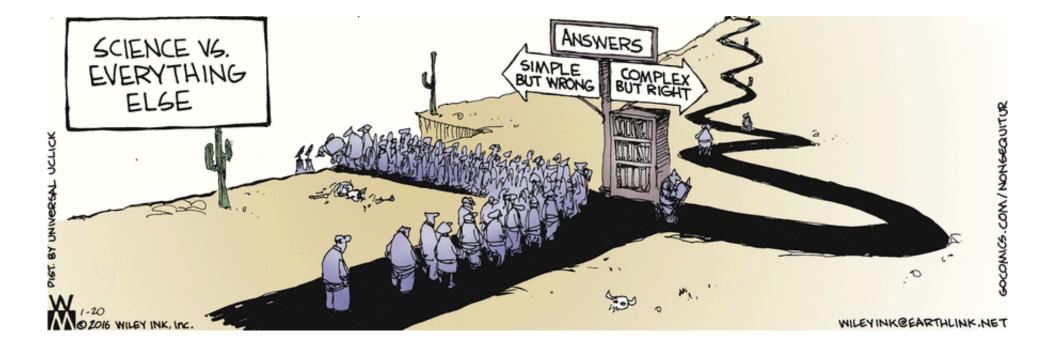
Coordinator — make sure all group members know their responsibilities and understand problem solution

- Recorder write ideas, possible solutions, and final answer
- Checkers check solution for accuracy before submitting

Develop Good Critical Thinking Skills by:

- Observe and ask good questions
- Hypothesize and predict
- Design an investigation
- Collect, process, and interpret data
- Draw conclusions
- Infer and generalize
- Communicate
- Relate cause and effect
- Recognize assumptions and evaluate
- Apply knowledge to new situations

http://cen.acs.org/articles/90/i20/Douglas-La-Follette.html


5/13/12, CEN, p. 36 Douglas La Follette: Ph.D. organic Chemist-turnedpolitician ran low-budget WI gubernatorial campaign in 2012 "Our whole society has an antiscience, anti-intellectual attitude"

"Solving problems scares voters because issues are complicated"

"People who are trained in science or have a predisposition toward science tend to be analytical and thoughtful, and they tend to try to solve problems"

Non Sequitur by Wiley Miller, 1/20/16

http://www.gocomics.com/nonsequitur/2016/01/20

Problem Solving Model 1:

- Understand the Problem
- Devise a Plan
- Carry out the Plan
- Look Back

G. Bodner, "Problem Solving: The Difference Between What We Do and What We Tell Students To Do," U. Chem. Ed., 2003, **7**, 37.

Problem Solving Model 2:

- Read the Problem
- Read the Problem AGAIN
- Write down what you think is the relevant information
- Draw a picture, make a list, write an equation or formula to help you begin to understand the problem
- Try Something (*Trial And Error*)
- Try Something ELSE
- **SEE** where this gets you

To be continued ...

G. Bodner, "Problem Solving: The Difference Between What We Do and What We Tell Students To Do," U. Chem. Ed., 2003, **7**, 37.

Problem Solving Model 2: Continued ...

- TEST intermediate results to see whether you are making any progress toward an answer
- Read the Problem AGAIN
- When appropriate, strike your forehead and say, "Son of a ..."
- Write down "an" answer (not necessarily "<u>the</u>" answer)
- **TEST** the answer to see if it makes sense
- Start over if you have to, *CELEBRATE* if you don't

G. Bodner, "Problem Solving: The Difference Between What We Do and What We Tell Students To Do," U. Chem. Ed., 2003, **7**, 37.

Chem 1A Problem Solving Example

You are given a liquid. What is the identity of the liquid?

Collect DATA – make observations qualitative – color quantitative – measure properties (pH)

Analyze DATA to calculate RESULTS

Interpret RESULTS – compare properties of liquid to properties of known liquids

Draw CONCLUSIONS - identify the liquid