Objective 5

Double replacement reactions 1: balancing precipitation reactions, applying solubility table, write net ionic equations to predict whether a reaction occurs, perform mole-mass and mole ratio calculations (gravimetric)

Lab 3: How Do You Make an Antacid??

http://www.vitacost.com/tums-regular-
strength-antacid-and-calcium-supplement

Stomach acid $\approx 0.2 \mathrm{M} \mathrm{HCl}(\mathrm{pH} 1-2)$.
When pH is below this value ==> indigestion and heartburn. Use Antacid to neutralize excess acid and raise pH.

Antacid Ingredient	Properties
NaHCO_{3}	Fast-acting, but can affect the bladder and kidneys upon prolonged use. High Na content.
CaCO_{3}	Excellent antacid but may stimulate the stomach to secrete more acid (acid rebound); prolonged use may cause constipation and impaired kidney function.
$\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Mg}(\mathrm{OH})_{2}$	Relatively safe, slow-acting but provides long lasting antacid action. $\mathrm{Al}(\mathrm{OH})_{3}$ causes constipation so $\mathrm{Mg}(\mathrm{OH})_{2}$ is usually added.

Some antacids contain aspirin or caffeine.

Chem 1A Reactions: predict products

1. Double replacement

Precipitation
Acid-base
Gas forming
2. Single replacement

Oxidation-reduction
3. Combustion

A Double Replacement Reaction involves the reaction of two compounds to produce two new compounds. Note the ions exchange with each other. $A B(a q)+C D(a q) ~-->A D+C B$

Aqueous solution: a soluble ionic compound breaks up into ions (see Solubility Rules Table). Forms electrolyte solution. What can you use this solution for?

3 types of Double Replacement reactions:

1. Precipitation: see Solubility Rules Table.
2. Acid-base
3. Gas forming (type of acid-base reaction):
one reactant is a base that contains $\mathrm{CO}_{3}{ }^{2-}$ or $\mathrm{HCO}_{3}{ }^{-}$
What is the other reactant?
one product is $\mathrm{H}_{2} \mathrm{CO}_{3}-->\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})$.
3 products total.

Harmall College Chemistry Club

If youre not part of the solution. youre part of the precipitate.

Solubility of Ionic Compounds in Water

Soluble

Alkali metals (Group 1A) and $\mathrm{NH}_{4}{ }^{+}$salts
Nitrates, bicarbonates
Halides ($\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}, \mathrm{I}^{-}$)
Sulfates
Insoluble
Hydroxides

Carbonates, Phosphates
$\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$

Exceptions

Some Li+ salts are insoluble
$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}^{2+}$

Exceptions

Alkali metals (e.g., NaOH), $\mathrm{NH}_{4}{ }^{+}$
Alkali metals, Ba^{2+}

How do Kidney Stones form?

Which ions combine to form a precipitate?
E.g., does Na^{+}combine with Cl^{-}to form $\mathrm{NaCl}(\mathrm{s})$?

Or does K^{+}combine with $\mathrm{PO}_{4}{ }^{3-}$ to form $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$?

How do Kidney Stones form?

Best way to prevent kidney stones?

An Ion Can Be Removed from a Solution by Precipitation

Add a substance that combines with the ion you want removed to form an insoluble solid

An aqueous solution contains chloride. Name two substances you would add to this solution to precipitate the chloride out of solution as a solid. Write a chemical equation that represents each reaction.

Ions Can Be Separated from a Solution by Precipitation
An aqueous solution contains chloride and sulfate. You want to separate the chloride and sulfate. What substance would you add to this solution to accomplish this separation? Write a chemical equation that represents this reaction.

Lab 3. How to make an Antacid?

Which reactants would you use to make CaCO_{3} ?
Choices:
NaOH
$\mathrm{K}_{2} \mathrm{CO}_{3}$
MgCl_{2}
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
E.g., Mix NaOH with $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$. Will CaCO_{3} form?

YES
NO

Objective: Predict the product(s) of the following reaction.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})----->
$$

a. $\mathrm{NaCa}+\mathrm{OHNO}_{3}$
b. $\quad \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CaOH}$
c. $\quad \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}$

Then, balance the equation.

A Precipitation Reaction produces a Solid (precipitate) Hint: use $A B(a q)+C D(a q)$--> AD + CB

Predict the product(s) and balance the equation:

$$
\begin{gathered}
\mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad \cdots \\
\text { Hint: } \mathrm{A}=\ldots, \mathrm{B}=\ldots, \mathrm{C}=\square
\end{gathered}
$$

Use charge and subscripts to write a correct chemical formula.

Use coefficients to balance the chemical equation.

This reaction makes Lime for fertilizer.

Write a Net lonic Equation for:
$2 \mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}--->2 \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}$

This reaction is used to make lime (fertilizer).
If you can write a Net lonic Equation: a Reaction occurs! (Prediction)

If All the ions are spectator ions: No ionic equation and No reaction occurs.

Nothing happens by just watching!

A Net Ionic Equation Shows What Is Happening in Solution IDENTIFY "Active" reactants and "spectator" ions.

$$
2 \mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad-->2 \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}
$$

Break appropriate compounds into ions (show sign and magnitude):

Molecular compound: leave as molecule (why?)
Ionic compound soluble in water: break into two ions
Ionic compound insoluble in water: leave as compound
Strong acid: break into two ions (why?)

Weak acid:
leave as molecule (why?)
Where do I find this information about acids and solubility?

Molecular eq:

$$
2 \mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad-->2 \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}
$$

Ionic eq:

$$
\begin{aligned}
2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}+\mathrm{Ca}^{2+} & +2 \mathrm{NO}_{3}^{-}--> \\
& 2 \mathrm{Na}^{+}+2 \mathrm{NO}_{3}^{-}+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
\end{aligned}
$$

Spectator ions $\left(\mathrm{Na}^{+}\right.$and $\left.\mathrm{NO}_{3}^{-}\right)$do NOT participate in the reaction.
Net lonic eq: $\quad 2 \mathrm{OH}^{-}+\mathrm{Ca}^{2+}-->\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$

Objective: Given mass of product, calculate mass of reactant (Similar to Lab 3 calculation)

I want to make 1 g of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$. (Slaked lime - for fertilizer)
$2 \mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}--->2 \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}$
How many g of NaOH do I need to use?
Method: 1. convert mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ to moles of $\mathrm{Ca}(\mathrm{OH})_{2}$.
2. Convert moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ to moles of NaOH .
3. Convert moles of NaOH to mass of NaOH .

Answer:
0.54 g
1.0 g
1.1 g

Objective: Given mass of product, calculate mass of reactant (Similar to Lab 3 calculation)

I want to make 1 g of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$.
$2 \mathrm{NaOH}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad-->2 \mathrm{NaNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}$
How many g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ do I need to use?
Answer:
1.1 g
2.2 g
4.4 g

Check your answer:
How many g of NaNO_{3} is produced?
Use Conservation of Mass:
Does mass of reactants = mass of products?

Objective: Predict whether a reaction occurs. If so, write a molecular equation and net ionic equation.

Saline solution ($\mathrm{NaCl}(\mathrm{aq})$) is added to $\mathrm{AgNO}_{3}(\mathrm{aq})$.
The precipitate is:
a. NaAg
b. NaNO_{3}
c. AgCl
d. CINO_{3}
e. No precipitate (no reaction)

This reaction is used to test for the amount of sodium in a water sample.

Saline solution $(\mathrm{NaCl}(\mathrm{aq}))$ is added to $\mathrm{AgNO}_{3}(\mathrm{aq})$

1. ID products. Use charge. Make sure chemical formulas are correct!

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq})-->\mathrm{NaNO}_{3}(?)+\mathrm{AgCl}(?)
$$

2. Is NaNO_{3} soluble? Is AgCl soluble? Use the Solubility Rules Table
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})-->\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+$ $\mathrm{AgCl}(\mathrm{s})$
3. ID and get rid of spectator ions.

So: $\quad \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})-->\mathrm{AgCl}(\mathrm{s})$

This reaction is used to test for Cl^{-} in water, which tells you how much Na^{+}is in the water.

Gravimetric Analysis

Test for the amount of sodium in a water sample: See Practice Problem 4e.
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq})-->\mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
$\mathrm{AgNO}_{3}(\mathrm{aq})$ is added to a 10.00 ml water sample.
A solid forms and is collected and dried.
The mass of the dried solid is 0.25 g .
What is the solid?
From the mass of solid, calculate the mass of Na in this water sample. (What conversion factor do you use?)

The RDA of sodium is 2300 mg per day.
Would you drink a cup (240 ml) of this water to get your RDA of sodium?

LIMITING and EXCESS reactants

It is BEST to use the exact amount of reactants to make products to reduce waste (green chemistry)

But many reactions need an EXCESS of one reactant to make the reaction occur.

Excess reactant - doesn't all react, some leftover
Limiting reactant - completely reacts

- "limits" the amount of product formed

LIMITING and EXCESS reactants

Example: 1 torso $(T)+1$ head $(H)+2$ arms $(A)+2$ legs (L) make 1 body $\left(\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}\right)$

$$
1 \mathrm{~T}+1 \mathrm{H}+2 \mathrm{~A}+2 \mathrm{~L}-->\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}
$$

Dr. Frankenstein has 10 heads, 17 torsos, 18 arms, and 21 legs. How many "Frankies" can Dr. Frankenstein make?

LIMITING and EXCESS reactants

Example: 1 torso $(T)+1$ head $(H)+2$ arms $(A)+2$ legs (L) make 1 body $\left(\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}\right)$

$$
1 \mathrm{~T}+1 \mathrm{H}+2 \mathrm{~A}+2 \mathrm{~L}-->\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}
$$

Initial	10	17	18	21	
Reacts	9	9	18	18	Produced = 9
Leftover	1	8	0	3	

Dr. Frankenstein has 10 heads, 17 torsos, 18 arms, and 21 legs. Dr. Frankenstein can make 9 "Frankies".

LIMITING and EXCESS reactants

Example: 1 torso $(T)+1$ head $(H)+2$ arms $(A)+2$ legs (L) make 1 body $\left(\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}\right)$

$$
1 \mathrm{~T}+1 \mathrm{H}+2 \mathrm{~A}+2 \mathrm{~L}-->\mathrm{T}_{1} \mathrm{H}_{1} \mathrm{~A}_{2} \mathrm{~L}_{2}
$$

The mass per body part ("molar" mass) of $A=3.6 \mathrm{~kg}, \mathrm{~L}=10.4$ $\mathrm{kg}, \mathrm{H}=3.9 \mathrm{~kg}, \mathrm{~T}=23.8 \mathrm{~kg} .500 \mathrm{~g}$ each of $\mathrm{A}, \mathrm{L}, \mathrm{H}$, and T are mixed together and undergo a reaction. What is the theoretical yield of bodies?

Hint: determine limiting reactant.
Limiting reactant determines amount of product (bodies)

LIMITING and EXCESS reactants

$\mathrm{Na}_{2} \mathrm{SO}_{4}$ is used as a drying agent. 100 g of TSP reacts with $100 \mathrm{ml} 1 \mathrm{M} \mathrm{MgSO}_{4}$.

TSP $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$ reacts with $\mathrm{MgSO}_{4}(\mathrm{aq})$
a. Write a molecular equation and net ionic equation.
b. Which reactant is the limiting reactant?
c. Calculate the mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that is produced.

100 g of TSP reacts with $100 \mathrm{ml} 1 \mathrm{M} \mathrm{MgSO}_{4}$.

Calculate the mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that is produced.

USE MOLES MOLES MOLES!!

$2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{MgSO}_{4}-->3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

mass

moles
moles
Use coefficients to determine mole ratio:
2 moles $\mathrm{Na}_{3} \mathrm{PO}_{4}$ to 3 mole $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
3 moles MgSO_{4} to 3 mole $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ is used
as a drying agent.

Another Type of Double Replacement Reaction:

Precipitate dissolves (reverse of ppt reaction)
E.g., tooth enamel dissolves in acid
http://
aidicine.com/ about-yourteeth/

Acidic foods, like soda and tomato sauce, can remove tooth enamel and lead to tooth decay (cavities).

Tooth enamel is the mineral apatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$.
Enamel is the hardest substance in our body

http://www.eschooltoday.com/tooth-care-for-children/tooth-gum-dental-decay.html

Fluoride is added to water or toothpaste to prevent tooth decay. Fluoride reacts with tooth enamel to form an acidresistant coating. Write a chemical equation that represents this reaction.
$\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})+\mathrm{F}^{-}--->$

New Materials for Tooth Decay
 (http://cen.acs.org/articles/94/i31/New-materials-take-bite-tooth.html)

Cavity slayer. silver diamine fluoride $=$ $\mathrm{AgF}\left(\mathrm{NH}_{3}\right)_{2}$

When silver diamine fluoride is brushed on a cavity, the silver acts as an antimicrobial agent and the fluoride promotes tooth remineralization. Ammonia stabilizes the mixture in solution.

http://cen.acs.org/articles/90/i14/Removing-Radioactivity.html

4/2/12, CEN, "Removing Radioactivity"

Radioactive ${ }^{89} \mathrm{Sr}$ and heavy metals are removed from beverages with CaWO_{4} nanoparticles:
$\mathrm{CaWO}_{4}+{ }^{89} \mathrm{Sr}^{2+}---->$

Yellow pellets composed of CaWO_{4} nanoparticles can be used to remove radioactive Sr from liquids, such as milk.

Strontium-90, a radioactive isotope of strontium, is considered the most dangerous part of radioactive fallout from atom bomb tests because it can replace the calcium in foods and become concentrated in bones and teeth.

Explain why strontium can replace calcium.
Tooth enamel is the mineral apatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$. Write a chemical equation that represents the reaction between strontium and tooth enamel.

