Objective 3

Write chemical formulas of ionic and molecular compounds.
Determine mole ratio of elements in compounds. Name ionic and molecular compounds.
(John Dalton: Atoms combine in whole number ratios to form compounds)

Chemical Formula Tells Us the Ratio of Elements in a Compound

The subscripts represent the number of each element in one molecule/particle or moles of each element in one mole of the compound.

12 eggs = 1 dozen eggs
24 sodas = 1 case
$144=1$ gross (a dozen dozen)
42 gallons of oil = 1 barrel
$6.02 \times 10^{23}=1$ mole (Avogadro's number, "chemist's dozen")
(John Dalton: Atoms combine in whole number ratios to form compounds) Chemical Formula Tells Us the Ratio of Elements in a Compound

Is $\mathrm{H}_{2} \mathrm{O}$ the same as $\mathrm{H}_{2} \mathrm{O}_{2}$? Yes No
(John Dalton: Atoms combine in whole number ratios to form compounds) Chemical Formula Tells Us the Ratio of Elements in a Compound

Is $\mathrm{H}_{2} \mathrm{O}$ the same as $\mathrm{H}_{2} \mathrm{O}_{2}$? Yes

See Subscripts: $1 \mathrm{H}_{2} \mathrm{O}$ has 2 H and 1 O
$1 \mathrm{H}_{2} \mathrm{O}_{2}$ has 2 H and 2 O

Objective: relate moles to chemical formula

How many atoms of H are in 20 water molecules?
How many atoms of O are in 20 water molecules?

Think: Conversions
What is the Conversion Factor?

Why Use Moles? We can' t see one atom or molecule of a substance (size of $1 \mathrm{H}_{2} \mathrm{O}$ molecule $=0.2 \mathrm{~nm}$) but we can see one mole of a substance (1 mole of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$).

Example:
$\mathrm{H}_{2} \mathrm{O}=2$ atoms of H and 1 atom of O in 1 molecule
Or
2 moles of H and 1 mole of O in 1 mole of $\mathrm{H}_{2} \mathrm{O}$

Think: Conversions
 What is the Conversion Factor?

In 20 water molecules, 40 H atoms and 20 O atoms.

Objective: relate moles to chemical formula

How many moles of H are in 4.5 moles of water?

How many moles of O are in 4.5 moles of water?

Think: Conversions What is the Conversion Factor?

In 4.5 moles of water, 9 moles of H and 4.5 moles of O .

Objective: relate moles to chemical formula

How many moles of C are in 4.5 moles of glycine (the simplest amino acid), $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$?

How many moles of H are in 4.5 moles of glycine (the simplest amino acid), $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$?

How many moles of O are in 4.5 moles of glycine (the simplest amino acid), $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$?

Think: Conversions

In 4.5 moles of glycine (the simplest amino acid), $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}, 9$ moles $\mathrm{C}, 22.5$ moles H, 9 moles O, 4.5 moles N .

Objective: relate moles to chemical formula

How many moles of C are in 4.5 moles of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

How many moles of H are in 4.5 moles of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

How many moles of O are in 4.5 moles of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

Think: Conversions

Objective: Identify and distinguish between atoms, molecules, and ions

How Do Ion(s) Form?

Element: same number of protons and electrons. Element exists all by itself.

Ions exist in compounds.

Another casualty in the War of the Atoms.
Ion: an element that has
gained electron(s) to form (-) ion (or anion)
or lost electron(s) to form (+) ion (or cation)

Ionic Charge Is Determined From the Periodic Table

Group Number (see Roman numeral) and lonic Charge
a. Metals lose electrons to form cations.

Metal ion charge $=$ Metal group number. See Fig. 2.10, p. 39.
b. Non-metals gain electrons to form anions.

Non-metal ion charge $=$ Non-metal group number - 8

- Group Letter (next to Roman numeral)

A = Main Group element
$B=$ Transition element

- Period Number

Atomic orbitals occupied by valence electrons. See Chapter 7.

Each Element has several Isotopes.

An Isotope has the same number of \qquad different number of \qquad .

Isotope	Mass Number	\# of protons	\# of electrons	\# of neutrons
Hydrogen	1			
Deuterium	2			
Tritium	3			

What does atomic weight tell you about the most abundant isotope?

CHM 1A - we will look at most abundant isotope of elements

Application: "Isotopes Mark The Spot" (C\&EN, 6/27/11, p. 32) Isotope ratios vary around the world and are used to determine origin, migration routes, and authenticate items like bottled water and fancy foods.
"Dinosaur Thermometry" (C\&EN, 6/27/11,

p. 15)

Researchers: dinosaur's body temperature was the same as that of large modern-day mammals: $36-38^{\circ} \mathrm{C}$ by analyzing carbon and oxygen isotopes in the tooth enamel of ancient dinosaur fossils.
${ }^{13} \mathrm{C}$ and ${ }^{18} \mathrm{O}$ preferentially bind to one another. The precise amount of ${ }^{13} \mathrm{C}-{ }^{18} \mathrm{O}-$ rich carbonate in a tooth mineral is related to the temperature at which the tooth formed. E.g., animals with high body temperatures incorporate less ${ }^{13} \mathrm{C}-{ }^{18} \mathrm{O}$-rich carbonate in their enamel than do animals with low body temperatures.

http://cen.acs.org/articles/88/i51/New-Format-Atomic-Weights.htm|

12/10/10, New Format For Atomic Weights

IUPAC is publishing a new table of standard atomic weights in which the values for 10 elements (H, Li, B, C, N, O, Si, S, Cl, TI) will be given as mass ranges rather than single values to address the natural variation in a material's isotope abundances, which depend on the sample's physical, chemical, and nuclear history.
For example, boron's atomic mass until now has been given as 10.811 amu . The new tables will list the value as [10.806; 10.821] to reflect the element's true atomic weight, which can vary over that range depending on the material's source.
"We' ve grown up thinking that standard atomic weights given in the periodic table are constants of nature," says Tyler B. Coplen, an isotope specialist at the U.S. Geological Survey, in Reston, Va. Coplen, adds that that fact holds true only for elements with just one stable isotope.

What Scientific Principle Is Involved Here?

"Perhaps one of you gentlemen would mind telling me just, what it is outside the window that you find so attractive..?"

Charge Can Be Used to Write a Chemical Formula

Coulomb's law
"Perhaps one of you gentlemen would mind telling me just,
what it is outside the window that you find so attractive..?"
Metal ion charge $=$ Metal group number Non-metal ion charge = Non-metal group number - 8 H has a charge $=+1$, O has a charge $=-2$, so $\mathrm{H}_{2} \mathrm{O}$ Na has a charge $=+1, \mathrm{Cl}$ has a charge $=-1$, so NaCl Ca has a charge $=+2, \mathrm{Cl}$ has a charge $=-1$, so CaCl_{2}

Molecules gain/lose electrons to form Polyatomic Ions

One oxygen combines with one hydrogen to form the hydroxide ion. What is the charge on this polyatomic ion?
See Table of Common Monoatomic and Polyatomic lons.

Name	Polyatomic Ion
Hydroxide	$\mathrm{OH}^{(?)}$
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$
Bicarbonate	$\mathrm{HCO}_{3}{ }^{-}$
Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Phosphate	$\mathrm{PO}_{4}{ }^{3-}$
Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Ammonium	$\mathrm{NH}_{4}{ }^{+}$

Communication is Important!

Ionic Compounds: Name Metal 1st, followed by Non-

 Metal using the "-ide" suffix.If you see a compound with a metal and 2 or more different nonmetals, think polyatomic ion.
a. $\mathrm{CaO}=$ calcium oxide
b. $\mathrm{Na}_{3} \mathrm{PO}_{4}=$ sodium phosphate
c. Calcium carbonate $=\mathrm{CaCO}_{3}$
d. $\mathrm{NaHCO}_{3}=$ sodium bicarbonate or sodium hydrogen carbonate

Molecular Compounds Name in order of Chemical Formula using "mono-", "di-", etc. prefix and "-ide" suffix on last element.
$\mathrm{CO}=$ carbon monoxide
$\mathrm{N}_{2} \mathrm{O}=$ dinitrogen monoxide

Write the chemical formula of a compound that contains the following ions:
sodium and iodide
calcium and oxygen
calcium and sulfate
magnesium and hydroxide
ammonium and nitrate
(used to treat iodine def.)
(lime)
(used in Plaster of Paris)
(used in Milk of Magnesia)
(used in fertilizer)

Give the name or chemical formula of the following compounds:
a. CaO
b. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
c. Calcium carbonate
d. NaHCO_{3}
e. CO
f. $\mathrm{N}_{2} \mathrm{O}$

Communication is Important: Naming Acids

NOTE: an Acid has to have H in its chemical formula (usually written first in chemical formula)

Binary Acids Contain H and a 2nd element Naming: use "hydro-" prefix, "-ic" suffix, followed by acid E.g., $\mathrm{HCl}=\underline{\text { hydrochloric }}$ acid

Ternary Acids Contain H, O, and a 3rd element Naming: remove H to determine polyatomic ion.
If polyatomic ion suffix is "-ate" ===> use "-ic" suffix, followed by acid.
If polyatomic ion suffix is "-ite" ===> use "-ous" suffix, followed by acid.
E.g., $\mathrm{H}_{2} \mathrm{SO}_{4}$ remove $\mathrm{H}==>\mathrm{SO}_{4}{ }^{2-}=$ sulfate so $\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulfuric acid

How are drugs named? Where do drug names come from?

http://www.ama-assn.org/resources/doc/usan/stem-list-cumulative.pdf

Name the following compounds. Which compound(s) is/are acids?
Which compound(s) is/are bases?

Formula	Compound Type	Name
CO	Molecular	Carbon monoxide
CO_{2}		
$\mathrm{~K}_{2} \mathrm{CO}_{3}$		
$\mathrm{P}_{2} \mathrm{O}_{5}$		
NaOH		
$\mathrm{HCl}(\mathrm{g})$		
$\mathrm{HCl}(\mathrm{aq})$		
$\mathrm{H}_{3} \mathrm{PO}_{4}$		
$\mathrm{Na}_{3} \mathrm{PO}_{4}$		

'Super' Mineral (http://pubs.acs.org/cen/newscripts/85/8532newscripts.html CEN, 8/6/07, p. 48)
Supervillain Lex Luthor no longer needs to steal KRYPTONITE from museums to fight Superman. Thanks to geologists at Rio Tinto, a London-based mining company, Luthor can get it free in Serbia. All he'll need is a shovel.

The museum heist scene in last year's "Superman Returns" revealed kryptonite's composition to movie fans: sodium lithium boron silicate hydroxide with fluorine. Around the same time, far from theaters and beneath the surface of Serbia's Jadar Basin, Rio Tinto geologists stumbled upon an unknown mineral. They sent a sample to London's Natural History Museum (NHM) for identification. Museum mineralogists knew they had a new mineral on their hands, but they had to prove it.

This mineral "was somewhat unusual, in that there was lots of material available, but the crystals were less than $5 \mu \mathrm{~m}$ in size-too small for conventional single-crystal analysis," says Pamela Whitfield, a researcher with Canada's National Research Council. By combining specialty X-ray powder diffraction techniques and computational methods, Whitfield's team determined the crystal's structure as well as its composition, LiNaSiB3O7(OH) (Acta Cryst. 2007, B63, 396)-like the cinematic kryptonite sans fluorine. It was a near match that Whiffield failed to notice but that was not lost on Chris Stanley, a mineralogist at NHM.

The International Mineralogical Association has since recognized the Jadar Basin mineral as new, but to the disappointment of Superman fans, named it "jadarite."

Is it green? Does it glow? Is it radioactive? "No, no, no," says Whitfield. Most likely, jadarite does not have the power to hurt a fly, let alone a flying superhero. August 6, 2007, p. 48
(John Dalton: Atoms combine in whole number ratios to form compounds)

Chemical Formula Tells Us the Ratio of Elements in a Compound

The subscripts represent the number of each element in one molecule/particle or moles of each element in one mole of the compound.

12 eggs = 1 dozen eggs
24 sodas = 1 case
144 = 1 gross (a dozen dozen)
42 gallons of oil = 1 barrel
$6.02 \times 10^{23}=1$ mole (Avogadro's number, "chemist's dozen")

Mole Day $=$ October 23 from 6:02 am to 6:02 pm

1 mole of pennies distributed evenly to each person in the world (7 billion people) = each person could spend $\$ 1$ million per second for one year.

1 mole of paper clips (3 cm) linked together would wrap around the Earth's equator 1.3 billion times.
(From C\&EN, 10/24/11, Newscripts, p. 56)

Ocean based Pelagibacter ubique has an estimated population of $10^{28} \approx 30 \%$ of all living things.

It is one of the smallest self-replicating cells known, with a length of 0.37-0.89 $\mu \mathrm{m}$ and a diameter of only $0.12-0.20 \mu \mathrm{~m} .30 \%$ of the cell's volume is taken up by its genome. It is gram negative. It recycles dissolved organic carbon. It undergoes regular seasonal cycles in abundance - in summer reaching $\sim 50 \%$ of the cells in the temperate ocean surface waters and plays a major role in the Earth's carbon cycle. (

```
http://en.wikipedia.org/wiki/Pelagibacter_ubique)
```


How many moles of this bacteria exist?

Hint: do a conversion.
http://problemas-microbiologia.blogspot.com/2010/01/cuanto-pesa-la-biomasa-de-un-microbio.html

