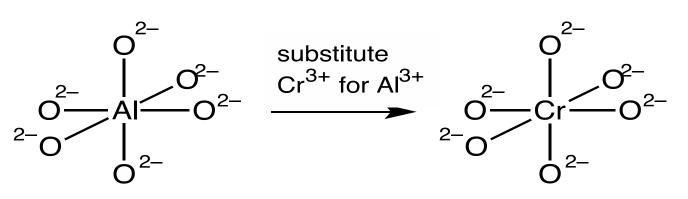
Chem 1B Objective 16:

Understand coordinate covalent bond and structure of coordination compounds.

Key Ideas:

Chem 1A: metal and non-metal form an ionic compound (ionic bond).

Some metals form covalent bond to a non-metal, usually to C or N. This bond is a *coordinate covalent* bond (2 electrons from non-metal combines with metal). Compare to covalent bond (1 unpaired electron from one atom combines with 1 unpaired electron from another atom).


Chem 1A: octet rule

Coordination compounds have an expanded octet – more than 8 electrons around central atom (usually metal).

Most *Main Group* Compounds Are *White*Most *Transition Metal* Compounds Are *Colored*

Color of gemstones (http://www.scifun.org/chemweek/Gemstones/Gemstones.html)

Rubies are red. Why?

Alumina: Al³⁺

surrounded by 6 O²⁻

Colorless

Octahedral geometry

Ruby: Cr³⁺

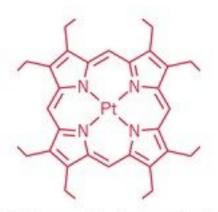
surrounded by 6 O²⁻

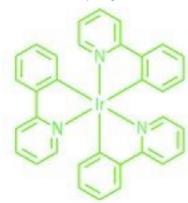
Red

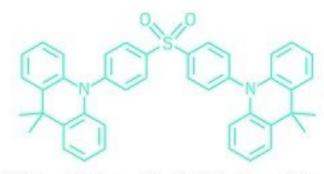
Octahedral geometry

http:// www.mnh .si.edu/ exhibits/ ruby/

Change metal ---> change color

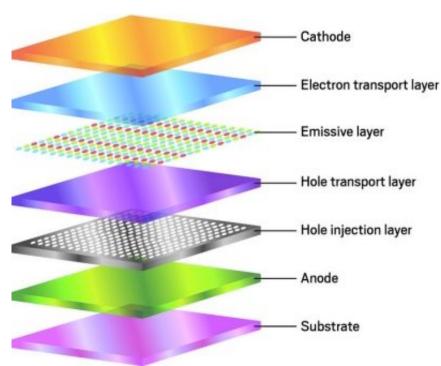

Drierite - color indicator in drying agents (see Lab 4) **Blue** means dry; **Pink** means wet


Write an equilibrium equation that represents this reaction.


Change substance bonded to Co²⁺ --> change color

OLEDs need colored compounds

http://cen.acs.org/articles/94/i28/rise-OLED-displays.html



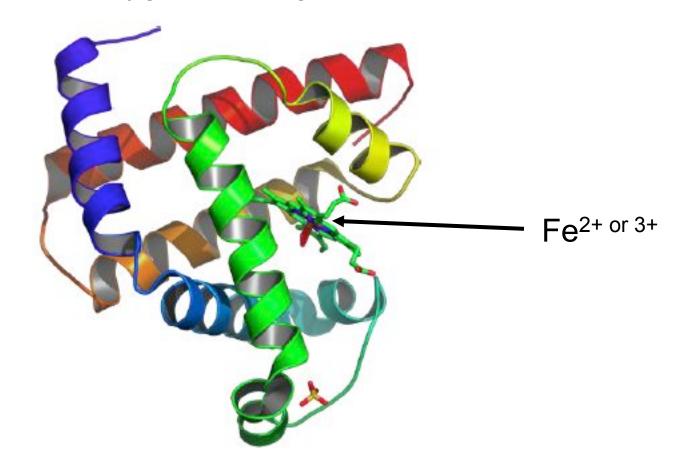
Platinum octaethylporphyrin

Tris[2-phenylpyridinato-C2,N]iridium(III)

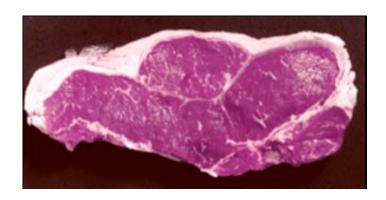
Diphenylsulfone dimethyldihydroacridine

How OLEDs work

An OLED can be manufactured using a variety of substrates, including glass, plastic, and metal. It consists of several layers of organic materials sandwiched between two electrodes. When a voltage is applied across the OLED, a current of electrons flows from the cathode to the anode, adding electrons to the emissive layer and taking them away—or creating electron holes—at the anode. At the boundary between these layers, electrons find holes, fall in, and give up a photon of light. The color of the light depends on the type of organic molecule in the emissive layer. The most advanced OLEDs use electron and hole injection and transport layers to modulate electron movement.

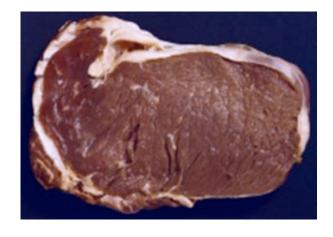

Meat color and Chemistry

The *Color of Meat* depends on the Substance that Binds to *Myoglobin*


ACS Webinar: Advanced Culinary Chemistry: The Science of the Grill (6/30/11)

Myoglobin Is an Oxygen Binding Protein Found in Muscle

The substance, e.g., H_2O or O_2 , that binds to Fe determines the color of myoglobin


The Color of Meat depends on the Substance that Binds to Myoglobin Which Piece of Meat Would You Buy?

Deoxymyoglobin Purple red Fe²⁺

Oxymyoglobin Red O₂ binds to Fe²⁺

Metmyoglobin Brown H₂O binds to Fe³⁺

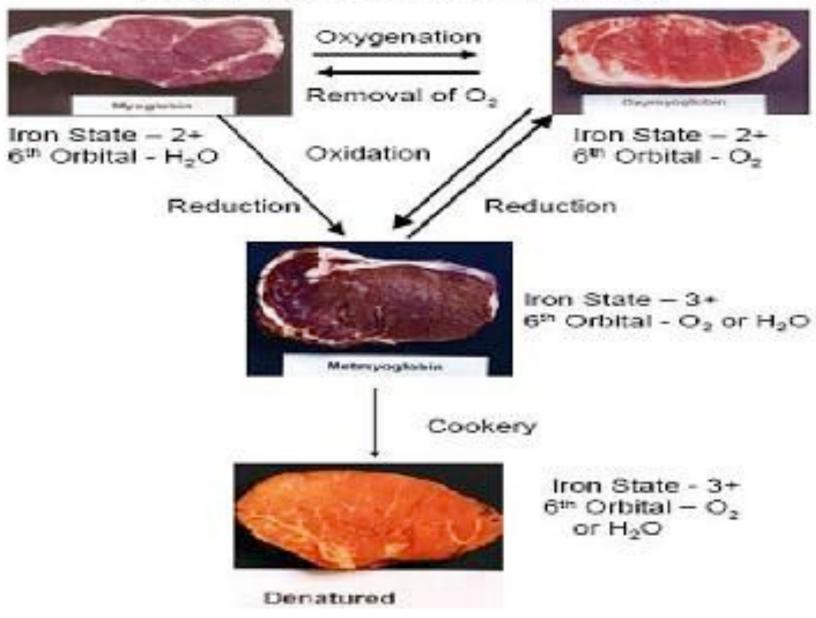
The *Color of Meat* depends on the Substance that Binds to *Myoglobin*

Oxymyoglobin Fe²⁺ red Metmyoglobin Fe³⁺ brown

Carboxymyoglobin Fe²⁺ red

Change charge on Fe --> change color
Change substance bonded to Fe --> change color

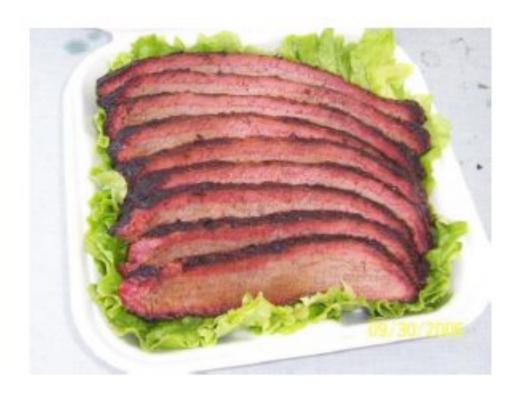
Which Piece of Meat Would You Buy?



Each piece is a <u>1 week old</u> sirloin

Left: carboxymyoglobin

Right: metmyoglobin


Fresh Meat Color Reactions

http://meatcolour.wikispaces.com/

Would You Eat a Pink Pork?

Nitrosohemochrome & "Smoke Ring"

Nitrogen dioxide (NO₂, leading to nitric acid and nitrosohemochrome); promoted by high nitrogen content in fuel; similar to curing with nitrites

In meat: Nitrite $(NO_2^-) \rightarrow \text{nitric oxide } (NO)$

NO₂- inhibits botulism (bacteria) growth

http://ourbestbites.com/2010/04/quick-tip-cooking-bacon/

Nitrosohemochrome (nitrosyl heme) – pink color See ham, cured meats (bacon, hot dogs, sausage)

https://en.wikipedia.org/wiki/Curing_(food_preservation)

https://en.wikipedia.org/wiki/Sodium_nitrite

http://www.sciencedaily.com/releases/2002/11/021113070827.htm

Covalent bond: bonding pair of e-comes from 1 unpaired e-from one atom and 1 unpaired e-from another atom

<u>Coordinate covalent bond:</u> bonding pair of e⁻ comes from <u>same</u> atom

$$M = metal$$
 $L = ligand (contributes 2 electrons)$

Coordination Chemistry Involves A Metal Covalently Bonded to A Non-Metal

Compare organic chemistry to coordination chemistry:

Organic Chemistry	Coordination Chemistry
Carbon	Transition metals
Period 2	Periods 4, 5, 6
2s 2p	(n-1)d (ns np)
4 bonds to carbon	4, 5, 6 bonds to metal
Octet rule = 8 electrons	16 and 18 electron rule
Tetrahedral	Octahedral
Functional groups	Ligands
White compounds	Colored compounds
Covalent bond	Coordinate covalent bond

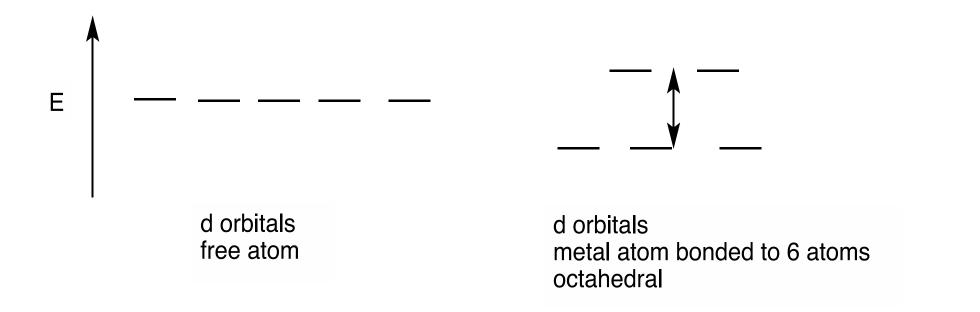
Transition Metals Can form more than 4 Bonds TMs Use **s**, **p**, **and d Orbitals** and Can Have An **Expanded Octet**: the 18 electron rule and 16 electron rule.

- 1.a. Count the electrons in $Fe(CO)_5$ and $Cr(CO)_6$.
- b. Determine the geometry in each compound. Hint: VSEPR
- 2. Chelates, chelating agent and sequesterants:
- a. Ethylene diamine and EDTA are used as food preservatives. How do they work?
- b. Why is Pb and Cd used in paint?

The Color of Transition Metal Compounds is Due to the Splitting of d Orbitals and the Ligand See Chang, 6th ed., p. 717, Fig. 20.15 TM ions colors

Coordination Compounds often have a tetrahedral shape or octahedral shape.

The shape determines the type of d orbital splitting.
Crystal field splitting tutorial


(http://www.wwnorton.com/college/chemistry/chemistry3/ch/18/chemtours.aspx)

The Ligand Field Strength how much the d orbitals split The Spectrochemical Series ranks ligand field strength

$$I^{-} < Br^{-} < CI^{-} < OH^{-} < F^{-} < H_{2}O < NH_{3} < en < CN^{-} < CO$$

Why is blood red? Chang, 6th ed., p. 725, Problem 20.46

Energy Difference (splitting) depends in Ligand bonded to Metal Strong field ligand --> larger splitting Weak field ligand --> smaller splitting

You can design specific colors by changing the ligand bonded to a metal.

Drierite - color indicator in drying agents (see Lab 4) **Blue** means dry; **Pink** means wet

$$\begin{bmatrix} CI & CI & CI & H_2O & CO & CI \\ H_2O & CO & CI \\ H_2O & CI & H_2O & OH_2 \\ H_2O & OH_2 & H_2O & OH_2 \\ \end{bmatrix} + 4 CI - COCI_4^{2-} (aq) = blue & Co^{2+} (aq) = pink & Octahedral geometry & Octahedral geometry & Octahedral geometry$$

<u>Spectrochemical series</u>: Cl⁻ is a *weaker* field ligand than H₂O Complementary color of blue is <u>orange</u> (lower E ==> smaller splitting) Complementary color of pink is <u>green</u> (higher E ==> larger splitting)

Metals Are Found In Biology and Medicine

1. What elements are found in the human body?

http://chemistry.about.com/cs/howthingswork/f/blbodyelements.htm
CEN, 7/26/10, p. 7 Metals in microbial metalloproteins: V, Mn, Fe, Co, Ni, Zn, Mo, W, Pb, U

2. What are trace elements?

http://www.healthtree.com/articles/supplements/trace-elements.php
Bruce Ames: micronutrients (folic acid, Vitamins K and D, Se, ..)
prevent disease (CEN, 2/14/11, p. 38)

3. What is the role of metals in the body?

http://wiki.answers.com/Q/What is the role of metals in human body

Platinum: cis-platin as cancer drug

Iron is found in <u>Heme Proteins</u>: hemoglobin, cytochrome, catalase and peroxidase, etc.

70 kg human contains about 3.7 g of Fe (70% in hemoglobin, 30% in ferritin).

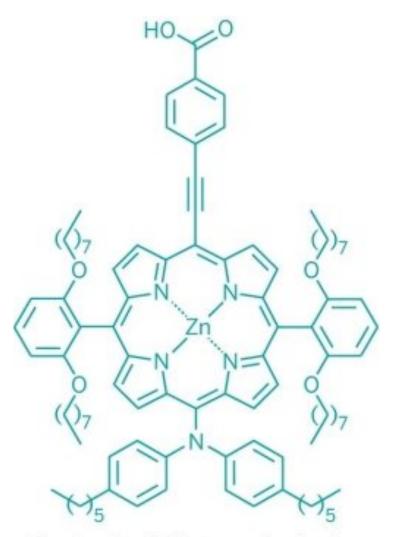
<u>Heme</u> = Fe-protoporphyrin IX, non-polypeptide (not a protein), square planar at Fe. (See structure: http://en.wikipedia.org/wiki/Heme)

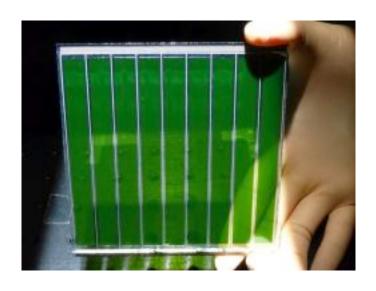
Many proteins require a tightly bound, specific non-polypeptide units for their biological activity → prosthetic group.

A protein <u>without</u> its characteristic prosthetic group is called an <u>apoprotein</u>.

What is a <u>coenzyme</u>?

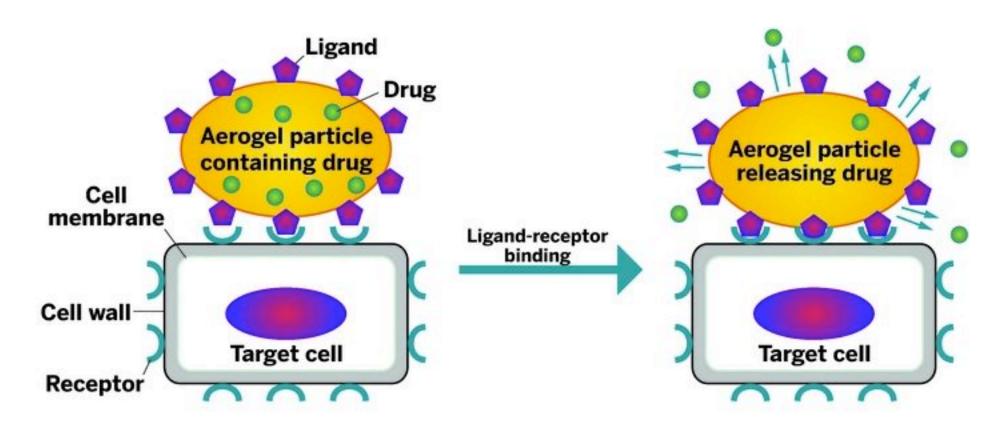
Hemoglobin – only ferrohemoglobin (Fe²⁺) binds O₂.


$$CH_2$$
 CH
 CH_3
 $CH=CH_2$
 CH_2
 CH_2


Heme b Iron protoporphyrin IX

http://themedicalbiochemistrypage.org/heme-porphyrin.php

http://cen.acs.org/articles/89/i45/Better-Dye-Yields-Better-Solar.html


11/7/11, CEN, p. 9 Zn porphyrin dye in dye sensitized solar cell sets record for power conversion efficiency (12.3%)

Customized zinc porphyrin dye

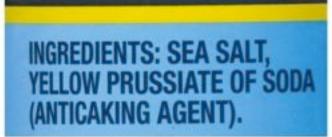
1/27/14, C&EN, p. 29 (http://cen.acs.org/articles/92/i4/New-Vehicle-Drug-Delivery.html)
Ligands Help Deliver Drugs to Target Cells

C&EN, 3/7/16, p. 12, Use Orange Peels to Remove Copper from Water

Citric acid binds to Cu(II) ions

$$pK_{a1} = 3.13$$
 $pK_{a2} = 4.76$
 $pK_{a3} = 6.4$

http://curiousclarinetist.blogspot.com/2011/02/humidifying-your-case.html


What must be charge on citric acid for Cu²⁺ to bind to it?

At what pH is this charge on citric acid?

Cyanide in My Table Salt??

http://cen.acs.org/articles/94/i3/Nonstick-Salt-Electrochemistry-Heroes-Fishy.html

Salt absorbs H₂O from air (hygroscopic) → dissolves

When the salt dries out, the salt crystals fuse (*cake*) together.

Anticaking agent = Yellow Prussiate of Soda = $Na_4[Fe(CN)_6] \cdot 10 H_2O$

Cyanide = CN⁻ ion

Why do you think Yellow Prussiate of Soda is used although it contains cyanide?

Other anti-caking agents: calcium silicate, tricalcium phosphate, NaHCO₃, rice flour.

Review

1	Λ al al!.a a. a.		: ! ! ! ! :	1!
`I _	- Adding a	product shifts ar	n eauiiibrium	reaction:
	, laanig a	product of file at	. oquinomanı	1040410111

a. to the product side

b. to the reactant side

c. no change

Key words:

2 tells you whether a reaction occurs spontaneously.
a. ΔH
b. ΔS
c. ΔG
Vovvvordo
Key words:
Key equations:

3. A battery ____ energy and has a E^o ____.

a. supplies d. greater than 0

b. Produces e. less than 0

c. Gives f. equal

Key words:

- 4. Battery acid contains ____ and ___ and has a ____ pH.
- a. H₂SO₄ / SO₄²⁻ / 18 M
- b. H⁺ / SO₄²⁻ / low
- c. H⁺ / HSO₄⁻ / low

Key words:

5. U-234 is	an alpha emitter with	a	of 247,000 years.
This	reaction is a	order wit	h a rate constant
of			

a. low-life / radioactive / second / 1 sec

b. half-life / radioactive decay / first / 2.8x10⁶

c. half-life / nuclear / first / 2.8x10⁻⁶

Key words:

6	tells you how fast a reaction occurs;	tells
you how	much products are produced;	tells you it's
hot in he	re.	

- a.K/k/q
- b.k/K/T
- c. T / Δ G / Δ H

Key words:

"A Diamond is Forever" (DeBeers, 1947)

Advertising Age magazine named "A Diamond Is Forever" the best advertising slogan of the twentieth century (2000).

But it's just carbon!

ARE DIAMONDS FOREVER?

C (diamond) → C (graphite)

http://www.bris.ac.uk/Depts/Chemistry/MOTM/diamond/diamond.htm http://commons.wikimedia.org/wiki/File:Carbon basic phase diagram.png

<u>Properties</u>: very hard, heat conductor, wide bandgap, high optical dispersion History of Diamonds http://www.amnh.org/exhibitions/diamonds/
Synthetic diamonds http://pubs.acs.org/cen/coverstory/8205/8205diamonds.html

There are two bottles of acid of the same concentration. One acid has a large pK_a ; the other has a small pK_a . Someone will give you a lot of money if you submerge your hand in one of the acids.

Which acid would you dunk you hand? Why?

Re-phrase the second sentence in "normal" English.

Explain what happens when a can of soda is opened. Give chemical reasons. How can you keep the soda from going flat?

http://www.clipartbest.com/soda-can-images

Sugar is used to preserve home-made jam and jelly by killing bacteria that may cause botulism. The appropriate sugar concentration will allow water to pass out of the cell and collapse (crenation) the cell. Should the sugar concentration that is used to preserve the jam be higher or lower than the sugar concentration inside bacteria cells? Give reasons.

http://www.recyclethis.co.uk/20100819/how-can-i-repair-too-runnytoo-solid-homemade-jamjelly

Marble is calcium carbonate. Is CaCO₃ soluble in water? What numerical quantity tells you this information? Give the numerical value of this quantity to support your answer.

http://en.wikipedia.org/wiki/Marble

What observation tells you acid reacts with marble? Write a chemical equation that represents the reaction between marble and acid. Use HCl for the acid.

You hold a thick rubber band to your upper lip and quickly stretch it. Your lip feels warm.

Rubber band (unstretched) → Rubber band (stretched)

https://www.quora.com/What-is-happening-on-the-molecular-level-when-you-stretch-a-stretchy-object-such-as-a-rubber-band

Is
$$\Delta H > 0$$
 or < 0 ?

Is
$$w > 0$$
 or < 0 ?

Is
$$\Delta G > 0$$
 or < 0 ?