Chem 1B Objective 8:

Apply equilibrium principles to acids and bases

<u>Key Ideas</u>: Many important acids and bases, e.g., H_2SO_4 in battery acid, CH_3COOH in vinegar, amino acids.

Acid (HA) dissociation reaction: HA --> H⁺ + A⁻ K_a is K_{eq} for this reaction. K_a = [H⁺] [A⁻]/[HA]

Base (A⁻) hydrolysis reaction: A⁻ + H₂O --> HA + OH⁻ K_b is K_{eq} for this reaction. K_b = [HA] [OH⁻]/[A⁻][H₂O]

Water dissociation reaction: $H_2O \rightarrow H^+ + OH^-$ K_w is K_{eq} for this reaction. K_w = [H⁺] [OH⁻] = 1 x 10⁻¹⁴.

 $K_w = K_a K_b$

Chemical reactions produce the COLOR and SMELL of Grilled Meat, Roasted Coffee, Dark Beer, Toasted Bread

http://www.starkinsider.com/2009/07/steakmarinade-recipe-tender-juicy-bb.html

http://www.suite101.com/ view_image.cfm/1464543

www.shutterstock.com · 9044662

http://www.shutterstock.com/ pic-9044662/stock-photo-sideview-of-a-blank-white-plate-with-ainch-caramelized-sugar-cageused-as-an-edible-prop-foran.html

4 types of browning reactions in foods: <u>an.html</u> <u>Maillard</u>: sugar + amino cpd (protein) ---> aroma, flavor, color

<u>Caramelization</u>: sugar + heat ---> caramel flavor, color

ascorbic acid oxidation: Vitamin C

<u>enzymatic browning</u> (Lab 5): phenolics --- enzyme --> color, flavor Enzyme is a protein --> amino acid --> acid/base http://cen.acs.org/articles/90/i11/Deciphering-Caramels-Deliciousness.html 3/12/12, CEN, p. 52 Caramel Composition determined

http://italiandish.squarespace.com/ imported-20090913150324/2008/11/29/ caramel-cake-daring-bakers-novemberchallenge.html

http://www.thekitchn.com/good-questionhow-do-i-make-ch-45160

glucose, fructose, and saccharose ---heat---> caramel

Caramel consists of several thousand compounds.

These include oligomers with up to 12 carbohydrate units formed through unselective glycosidic bonding, dehydration products of oligomers that can lose up to eight water molecules, hydroxyfurfural derivatives, and colored aromatic products. Lab 5: Enzymatic Browning occurs when fruit tissue is cut or peeled. Polyphenol Oxidase (PPO) enzyme is released, which oxidizes Phenolic compounds. Fruit turns **Brown**.

Chlorogenic acid, and other phenols are converted into melanin precursors with polyphenol oxidase (PPO), .

Fruit can be prevented from browning with preservatives or BUFFERS

a. What is the pH of an apple? Banana?
<u>http://www.engineeringtoolbox.com/food-ph-d_403.html</u>
b. At what pH is the fruit browning enzyme active?

http://www.worthington-biochem.com/TY/default.html

Polyphenol oxidase in mushroom

c. If the fruit browning enzyme is active at the same pH as the apple, what color will the apple be?

d. Do fruits/vegetables that contain Vitamin C turn brown? Give

reasons. (see https://appliedphlogiston.wordpress.com/2010/07/06/the-science-of-cooking-why-guacamole-turns-brown/)

References:

http://www.landfood.ubc.ca/courses/fnh/301/brown/brown_prin.htm http://www.food-info.net/uk/colour/enzymaticbrowning.htm http://www.5min.com/Video/Learn-about-the-Maillard-Reaction-83227082 http://www.cfs.purdue.edu/fn/fn453/ld_amino.html http://www.cfs.purdue.edu/fn/fn453/ld_amino.html http://www.math.unl.edu/~jump/Center1/BioChemLabs.html http://www.exploratorium.edu/cooking/meat/INT-what-makes-flavor.html http://class.fst.ohio-state.edu/fst605/605p/Maillard.pdf Lab 5: Buffers are Used in Food Preservatives

Examples:

sodium benzoate (or benzoic acid) in salad dressing, carbonated drinks, jams, fruit juices

sodium citrate (or citric acid) in soft drinks, household cleaners, pharmaceuticals

A Buffer is a substance that resists change in pH

A Buffer contains a weak ACID and its conjugate BASE (or weak base and its conjugate acid)

How does it work? Buffer de-activates enzyme by changing pH

Lab Report **Objective**: Communicate What You Did and What It Means

Table 1. (Descriptive title) Include your <u>data</u> and <u>results</u>.

	Apple time to turn brown, min	Banana time to turn brown, min	Apple reaction ranking	Banana reaction ranking
Control				
рН х				
рН у				
Vitamin C				
NaCl				

<u>Discussion</u>: Describe your <u>Data</u>. Convert <u>Data</u> to <u>Results</u>. Explain (interpret) what your <u>Results</u> mean.

"With _____, the time for the apple to turn brown was _____ min compared to _____ min for the control. : The effect of _____ on the fruit browning reaction is _____."

Fruit Fresh Keeps Fruit from Turning Brown "Protect from browning up to 6 hours. All natural antioxidant."

Ingredients:

Dextrose, Ascorbic Acid (Vitamin C), Citric Acid, Silicon Dioxide (Anti-caking). Contains No Sulfites.

http://www.amazon.com/Jarden-24100-Fruit-Fresh-Produce-Protector/dp/ B000KOSP6M/ref=pd_sbs_k_2/176-2250616-3954955? ie=UTF8&refRID=1XF2KHQ8K5ED71QC141G

How Else to Keep your Fruit Fresh?

http://www.drvita.com/ product/eat-cleaner-fruitamp-vegetable-wash-8-oz/ 9331

http://en.wikipedia.org/wiki/Lemon

Ingredients:

citric acid Sodium citrate Calcium ascorbate Sea salt glycerin http://cen.acs.org/articles/91/i14/Engineered-Apples-Near-Approval.html 4/8/13, CEN, p. 31 "Engineered Apples Near Approval"

Genetically engineered apples won't turn brown. Okanagan Specialty Fruits (British Columbia) triggers a selective gene-silencing pathway and inserts a selection gene that is broadly recognized as harmless to humans.

Agrobacterium tumefaciens injects this plasmid, modified by Okanagan scientists, into infected cells. Only the genes between the border sequences of this plasmid are incorporated into the apple genome. The rest of the plasmid contains genes used by the bacterium (yellow).

in the U.S., 88% of corn, 93% of soybeans, and 94% of cotton is genetically engineered (Source: U.S. Department of Agriculture, 2012)

Water behaves like an Acid or a Base

Water dissociates into H⁺ and OH⁻: (equilibrium reaction)

$$H_2O + H_2O <==> H_3O^+ + OH^-$$

acid base

SHORTCUT:

$$H_2O \iff H^+(aq) + OH^- = [H^+][OH^-] = 1 \times 10^{-14}$$

 $H^+(aq) = H_3O^+$

Why does water have a pH of 7? (do an equilibrium calculation)

Only 1 H₂O molecule in 10 million dissociates into H⁺ and OH⁻!

Why is pH = 7 considered neutral? (compare [H⁺] to [OH⁻])

Water behaves like an Acid or a Base

Water dissociates into H⁺ and OH⁻: (equilibrium reaction)

$$H_2O <==> H^+ + OH^-$$

$$K_w = [H^+] [OH^-] = 1 \times 10^{-14}$$

Why does water have a pH of 7? (do an equilibrium calculation)

$$[H^+] = 1 \times 10^{-7} \rightarrow PH = -log [H^+]$$

Why is pH = 7 considered neutral? (compare [H⁺] to [OH⁻])

$$[H^+] = 1 \times 10^{-7} = [OH^-]$$

What is the pOH of water?

pOH = -log [OH⁻] pH + pOH = 14

Every Acid has a Partner (conjugate) Base (and vice versa).

 $HA + H_2O <==> H_3O^+$ base conjugate acid conjugate base acid gives up its H⁺ its H⁺

+ A⁻

can give up can accept a H⁺

SHORTCUT: $HA <==> H^+ + A^$ acid conjugate base gives up can accept a H⁺ its H⁺

 $K_a = (See Chang,$ Table 16.3, 4)

What is the conjugate base of sulfuric acid?

What is the conjugate acid of NaOH?

Acids can be <u>Strong</u> or <u>Weak</u>

Strong acids have large K_a . (easily donates H⁺, many H⁺ in soln) Weak acids have $K_a < 1$. (wants to keep its H⁺, low [H⁺])

Which picture best represents HCI?

Acids can be <u>Strong</u> or <u>Weak</u>

Strong acids have large K_a . (easily donates H⁺, many H⁺ in soln) Weak acids have $K_a < 1$. (wants to keep its H⁺, low [H⁺])

Which picture best represents CH₃COOH (HA)?

Acids can be Strong or Weak

Strong acids have large K_a. (easily donates H⁺, many H⁺ in soln)

Weak acids have K_a < 1. (wants to keep its H⁺, low [H⁺])

Which statement is true?

(i) 0.1 M HCI has a higher [H⁺] than 0.1 M acetic acid.(ii) 0.1 M HCI has a higher pH than 0.1 M acetic acid.

Objective: Calculate the pH of a weak acid

0.1 M HCI (strong acid) has a pH of 1. Why?

However, 0.1 M acetic acid (weak acid) has a pH greater than 1. Calculate the pH of 0.1 M acetic acid.

CH₃COOH <==> H⁺ + CH₃COO⁻ $K_a = 1.8 \times 10^{-5}$ Answer? (a) pH = 1 (b) pH = 2.4 (iii) pH = 2.9 (iv) pH = 7 **Objective**: Determine the amounts of reactants and products at *Equilibrium*

Calculate the pH of 0.1 M acetic acid. $CH_3COOH <==> H^+ + CH_3COO^ K_a = 1.8 \times 10^{-5}$ Solution: $CH_3COOH <==> H^+ + CH_3COO^-$ 0.1 0 Initial [] () Amount reacts Χ Χ Χ Amount at <u>equilibrium</u> 0.1-x Χ Х $K_a = 1.8 \times 10^{-5}$ $= (x)^2$ = (x)² (0.1 - x)0.1

Keep it Simple: Since K_a is very small \rightarrow assume $0.1 - x \approx 0.1$ Solve for x! $x = [H^+] = 0.0013$ M $pH = - \log (0.0013) = 2.9$

How Does Concentration Affect pH?

Acetic acid has a K_a of 1.8 x 10⁻⁵.

Vinegar is 0.9 M acetic acid with a pH of 2.4

0.1 M acetic acid has a pH of 2.9.

Using equilibrium principles, explain why the pH of vinegar is lower than the pH of 0.1 M acetic acid.

Do Weak Acids Have the Same Weakness?

Aspirin ($C_9H_8O_4$) has a K_a of 3.0 x 10⁻⁴.

Acetic acid has a K_a of 1.8 x 10⁻⁵.

Which acid is stronger? Why?

http://markfuscomd.com/blog/2012/05/ should-aspirin-be-stopped-prior-tolaparoscopic-abdominal-surgery/

http://www.foodsubs.com/ Vinegars.html

Draw the structure of aspirin. Which H is acidic? Calculate the pH of 0.1 M aspirin solution.

Bases undergo hydrolysis

 $A^{-} + H_2O <==> HA + OH^{-} K_b = K_w/K_a$

Bases can be strong or weak.

Which statement is true? (i) Weak bases accept H⁺ more easily than strong bases.

(ii) Weak bases have a lower K_b than strong bases.

(iii) NaOH is a weaker base than $NaC_2H_3O_2$.

(iv) 0.1 M NaOH has the same pH as 0.1 M NaC₂H₃O₂.

(v) 0.1 M NaOH has a lower [OH-] than 0.1 M NaC₂H₃O₂.

Add Equations (1) and (2). What do you get?

HA <===> $H^+ + A^-$

 $A^{-} + H_{2}O <==> HA + OH^{-}$

K_a acid dissociation (1)

K_b base hydrolysis (2)

 $K_3 = (3)$

How is K_3 related to K_a and K_b ?

Objective: Calculate the pH of a weak base

What is the pH of a 0.1 M NaCH₃COO solution?

To calculate the pH of a weak base, e.g., $NaC_2H_3O_2$: write base hydrolysis reaction calculate K_b. Look up K_a of acid. do an equilibrium calculation to calculate [OH⁻] calculate pOH (= - log [OH⁻] calculate pH (using pH + pOH = 14) **Objective**: Calculate the pH of a weak base What is the pH of a 0.1 M NaCH₃COO solution? write base hydrolysis reaction

 $CH_3COO^- + H_2O <==> CH_3COOH + OH^$ calculate K_b. Look up K_a of acid.

 $K_{b} = K_{w}/K_{a} = 1.0 \times 10^{-14}/1.8 \times 10^{-5} = 5.6 \times 10^{-10}.$

do an equilib	rium calculation to calculat	e [OH⁻]	
	$CH_{3}COO^{-} + H_{2}O <==>$	$CH_3COOH +$	OH⁻
Initial	0.1	0	0
Reacts	X	Х	X
Equilibrium	0.1 – x	Х	Х
$K_{b} = 5.6 \times 10^{10}$	$x^{-10} = x^2/(0.1 - x) \approx x^2/(0.1)$	x = [OH-] = 7	′.5 x 10⁻ ⁶

calculate pOH = $-\log [OH^{-}] = -\log (7.5 \times 10^{-6}) = 5.1$ calculate pH = 14 - pOH = 14 - 5.1 = 8.9

https://thechronicleflask.wordpress.com/tag/ sodium-benzoate/

Sodium Benzoate (NaC_6H_5COO) is used as a food preservative.

What is the conjugate acid of benzoate, $C_6H_5COO^-$?

What is the pH of a 0.1 M Sodium Benzoate solution?

 K_a of benzoic acid = 6.5 x 10⁻⁵. K_b of benzoate = $[OH^-] = 3.9 \times 10^{-6} M$ Baking Soda (NaHCO₃) is a _____.

Calculate the pH of a 0.1 M baking soda solution.

http://www.armandhammer.com/solutions/ solution-53/antacid.aspx

 $H_2CO_3 pK_a = 6.4$ [OH⁻] = 5.0 x 10⁻⁵ M pH = 9.7

Sulfuric acid is the acid found in car batteries. What is/are the major sulfur containing substance(s) in this solution?

http://www.propertiesofmatter.si.edu/carbattery.html

http://www.tums.com/products.html

```
Decomposition of CaCO_3:

CaCO_3 <==> CaO + CO_2.

At 1000°C, K = 9.75

At 848°C, K = 1.
```

 $CaCO_3$ is the active ingredient in Tums and Rolaids. Is this reaction exothermic or endothermic?

Is K greater than 1 or less than 1 at room temperature? (Note: we will calculate K at room temperature later.)

Is it safe to store Tums at room temperature?