Chem 1B Objective 8:
Apply equilibrium principles to acids and bases
Key Ideas: Many important acids and bases, e.g., $\mathrm{H}_{2} \mathrm{SO}_{4}$ in battery acid, $\mathrm{CH}_{3} \mathrm{COOH}$ in vinegar, amino acids.

Acid (HA) dissociation reaction: $\mathrm{HA}-->\mathrm{H}^{+}+\mathrm{A}^{-}$ $\mathrm{K}_{\mathrm{a}}$ is $\mathrm{K}_{\mathrm{eq}}$ for this reaction. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$

Base (A-) hydrolysis reaction: $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{HA}+\mathrm{OH}^{-}$ $\mathrm{K}_{\mathrm{b}}$ is $\mathrm{K}_{\text {eq }}$ for this reaction. $\mathrm{K}_{\mathrm{b}}=[\mathrm{HA}]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$

Water dissociation reaction: $\mathrm{H}_{2} \mathrm{O}$--> $\mathrm{H}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{w}}$ is $\mathrm{K}_{\mathrm{eq}}$ for this reaction. $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$.
$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}$

Chemical reactions produce the COLOR and SMELL of Grilled Meat, Roasted Coffee, Dark Beer, Toasted Bread

http://www.starkinsider.com/2009/07/steak-marinade-recipe-tender-juicy-bb.html

http://www.suite101.com/
view image.cfm/1464543

http://www.shutterstock.com/ pic-9044662/stock-photo-side-
view-of-a-blank-white-plate-with-a$\frac{\text { pic-9044662/stock-photo-side- }}{\text { view-of-a-blank-white-plate-with-a- }}$ inch-caramelized-sugar-cage-used-as-an-edible-prop-foran.html
wewshittentockeom - 9044662

4 types of browning reactions in foods:
Maillard: sugar + amino cpd (protein) ---> aroma, flavor, color
Caramelization: sugar + heat ---> caramel flavor, color
ascorbic acid oxidation: Vitamin C
enzymatic browning (Lab 5): phenolics --- enzyme --> color, flavor Enzyme is a protein --> amino acid --> acid/base
http://cen.acs.org/articles/90/i11/Deciphering-Caramels-Deliciousness.html 3/12/12, CEN, p. 52 Caramel Composition determined

http://italiandish.squarespace.com/ imported-20090913150324/2008/11/29/
caramel-cake-daring-bakers-november-

http://www.thekitchn.com/good-question-how-do-i-make-ch-45160
challenge, html
glucose, fructose, and saccharose ---heat---> caramel

Caramel consists of several thousand compounds.
These include oligomers with up to 12 carbohydrate units formed through unselective glycosidic bonding, dehydration products of oligomers that can lose up to eight water molecules, hydroxyfurfural derivatives, and colored aromatic products.

Lab 5: Enzymatic Browning occurs when fruit tissue is cut or peeled. Polyphenol Oxidase (PPO) enzyme is released, which oxidizes Phenolic compounds.
Fruit turns Brown.


Chlorogenic acid, and other phenols are converted into melanin precursors with polyphenol oxidase (PPO), .


Chlorogenic acid


Quinone product


Melanin

## Fruit can be prevented from browning with preservatives or BUFFERS

a. What is the pH of an apple? Banana?
http://www.engineeringtoolbox.com/food-ph-d 403.html
b. At what pH is the fruit browning enzyme active?
http://www.worthington-biochem.com/TY/default.html
Polyphenol oxidase in mushroom
c. If the fruit browning enzyme is active at the same pH as the apple, what color will the apple be?
d. Do fruits/vegetables that contain Vitamin C turn brown? Give reasons. (see https://appliedphlogistor.wordpress.com/2001007/706/the-science-of-cooking-why-guacamole-turns-brown/)

References:
http://www.landfood.ubc.ca/courses/fnh/301/brown/brown_prin.htm
http://www.food-info.net/uk/colour/enzymaticbrowning.htm
http://www.5min.com/Video/Learn-about-the-Maillard-Reaction-83227082
http://www.cfs.purdue.edu/fn/fn453/Id_amino.html
http://www.math.unl.edu/~jump/Center1/BioChemLabs.html
http://www.exploratorium.edu/cooking/meat/INT-what-makes-flavor.html
http://class.fst.ohio-state.edu/fst605/605p/Maillard.pdf

## Lab 5: Buffers are Used in Food Preservatives

## Examples:

 sodium benzoate (or benzoic acid) in salad dressing, carbonated drinks, jams, fruit juicessodium citrate (or citric acid) in soft drinks, household cleaners, pharmaceuticals


A Buffer is a substance that resists change in pH

A Buffer contains a weak ACID and its conjugate BASE (or weak base and its conjugate acid)

How does it work? Buffer de-activates enzyme by changing pH

Lab Report Objective: Communicate What You Did and What It Means
Table 1. (Descriptive title) Include your data and results.

|  | Apple time to <br> turn brown, <br> min | Banana time <br> to turn brown, <br> min | Apple <br> reaction <br> ranking | Banana <br> reaction <br> ranking |
| :--- | :--- | :--- | :--- | :--- |
| Control |  |  |  |  |
| pH x |  |  |  |  |
| pHy |  |  |  |  |
| Vitamin C |  |  |  |  |
| NaCl |  |  |  |  |

Discussion: Describe your Data. Convert Data to Results. Explain (interpret) what your Results mean.
"With ___ , the time for the apple to turn brown was ___ min compared to ___ min for the control. . $\therefore$ The effect of ____ on the fruit browning reaction is $\qquad$ ."

## Fruit Fresh Keeps Fruit from Turning Brown

 "Protect from browning up to 6 hours. All natural antioxidant."

Ingredients:
Dextrose,
Ascorbic Acid (Vitamin C),
Citric Acid,
Silicon Dioxide (Anti-caking).
Contains No Sulfites.

## How Else to Keep your Fruit Fresh?


http://www.drvita.com/ product/eat-cleaner-fruit-amp-vegetable-wash-8-ozl 9331

Ingredients:
citric acid
Sodium citrate
Calcium ascorbate
Sea salt
glycerin

## http://cen.acs.org/articles/91/i14/Engineered-Apples-Near-Approval.html

 4/8/13, CEN, p. 31 "Engineered Apples Near Approval"

Genetically engineered apples won' t turn brown. Okanagan Specialty Fruits (British Columbia) triggers a selective gene-silencing pathway and inserts a selection gene that is broadly recognized as harmless to humans.

Agrobacterium tumefaciens injects this plasmid, modified by Okanagan scientists, into infected cells. Only the genes between the border sequences of this plasmid are incorporated into the apple genome. The rest of the plasmid contains genes used by the bacterium (yellow).
in the U.S., $88 \%$ of corn, $93 \%$ of soybeans, and $94 \%$ of cotton is genetically engineered (Source: U.S. Department of Agriculture, 2012)

## Water behaves like an Acid or a Base

Water dissociates into $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$: (equilibrium reaction)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}<====>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}}
\end{aligned}
$$

SHORTCUT:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}<===>\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
\mathrm{H}^{+}(\mathrm{aq})=\mathrm{H}_{3} \mathrm{O}^{+}
\end{gathered}
$$

Why does water have a pH of 7 ? (do an equilibrium calculation)
Only $1 \mathrm{H}_{2} \mathrm{O}$ molecule in 10 million dissociates into $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$!
Why is $\mathrm{pH}=7$ considered neutral? (compare $\left[\mathrm{H}^{+}\right]$to $\left[\mathrm{OH}^{-}\right]$)

## Water behaves like an Acid or a Base

Water dissociates into $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$: (equilibrium reaction)

$$
\begin{array}{l|l}
\mathrm{H}_{2} \mathrm{O}<===>\mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
\end{array}
$$

Why does water have a pH of 7 ? (do an equilibrium calculation)

$$
\left[\mathrm{H}^{+}\right]=1 \times 10^{-7} \rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Why is $\mathrm{pH}=7$ considered neutral? (compare $\left[\mathrm{H}^{+}\right]$to $\left[\mathrm{OH}^{-}\right]$)

$$
\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}=\left[\mathrm{OH}^{-}\right]
$$

What is the pOH of water?

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pH}+\mathrm{pOH}=14
\end{aligned}
$$

Every Acid has a Partner (conjugate) Base (and vice versa).

$$
\begin{array}{llll}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}<===> & \mathrm{H}_{3} \mathrm{O}^{+} \\
\text {conjugate acid } \\
\text { acid base } & \text { can give up } & & \mathrm{A}^{-} \\
\text {gives up } & \text { conjugate base } \\
\text { its } \mathrm{H}^{+} & \text {its } \mathrm{H}^{+} & \text {can accept a } \mathrm{H}^{+}
\end{array}
$$

SHORTCUT:
HA <===> $\mathrm{H}^{+}+\mathrm{A}^{-}$
acid
gives up
conjugate base can accept a $\mathrm{H}^{+}$

Table 16.3, 4)

What is the conjugate base of sulfuric acid?
What is the conjugate acid of NaOH ?

Acids can be Strong or Weak

Strong acids have large $\mathrm{K}_{\mathrm{a}}$. (easily donates $\mathrm{H}^{+}$, many $\mathrm{H}^{+}$in soln) Weak acids have $\mathrm{K}_{\mathrm{a}}<\mathbf{1}$. (wants to keep its $\mathrm{H}^{+}$, low $\left[\mathrm{H}^{+}\right]$)

Which picture best represents HCl ?


A


B

Acids can be Strong or Weak
Strong acids have large $\mathrm{K}_{\mathrm{a}}$. (easily donates $\mathrm{H}^{+}$, many $\mathrm{H}^{+}$in soln) Weak acids have $\mathrm{K}_{\mathrm{a}}<\mathbf{1}$. (wants to keep its $\mathrm{H}^{+}$, low $\left[\mathrm{H}^{+}\right]$)

Which picture best represents $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{HA})$ ?


C


D

## Acids can be Strong or Weak

Strong acids have large $\mathrm{K}_{\mathrm{a}}$. (easily donates $\mathrm{H}^{+}$, many $\mathrm{H}^{+}$ in soln)


A

Weak acids have $\mathrm{K}_{\mathrm{a}}<1$. (wants to keep its $\mathrm{H}^{+}$, low $\left[\mathrm{H}^{+}\right]$)


D

Which statement is true?
(i) 0.1 M HCl has a higher $\left[\mathrm{H}^{+}\right]$than 0.1 M acetic acid.
(ii) 0.1 M HCl has a higher pH than 0.1 M acetic acid.

## Objective: Calculate the pH of a weak acid

0.1 M HCl (strong acid) has a pH of 1 . Why?

However, 0.1 M acetic acid (weak acid) has a pH greater than 1 . Calculate the pH of 0.1 M acetic acid.
$\mathrm{CH}_{3} \mathrm{COOH}<==>\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
Answer? (a) $\mathrm{pH}=1$
(b) $\mathrm{pH}=2.4$
(iii) $\mathrm{pH}=2.9$
(iv) $\mathrm{pH}=7$

Objective: Determine the amounts of reactants and products at Equilibrium

Calculate the pH of 0.1 M acetic acid. $\mathrm{CH}_{3} \mathrm{COOH}<==>\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$

Solution:


$$
\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{(\mathrm{x})^{2}}{(0.1-\mathrm{x})}=\frac{(\mathrm{x})^{2}}{0.1}
$$

Keep it Simple: Since $K_{a}$ is very small $\rightarrow$ assume $0.1-x \approx 0.1$ Solve for x !

$$
\begin{aligned}
& \mathrm{x}=\left[\mathrm{H}^{+}\right]=0.0013 \mathrm{M} \\
& \mathrm{pH}=-\log (0.0013)=2.9
\end{aligned}
$$

## How Does Concentration Affect pH?

Acetic acid has a $K_{a}$ of $1.8 \times 10^{-5}$.
Vinegar is 0.9 M acetic acid with a pH of 2.4
0.1 M acetic acid has a pH of 2.9.

Using equilibrium principles, explain why the pH of vinegar is lower than the pH of 0.1 M acetic acid.

## Do Weak Acids Have the Same Weakness?

Aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ has a $\mathrm{K}_{\mathrm{a}}$ of $3.0 \times 10^{-4}$.

Which acid is stronger? Why?

Acetic acid has a $\mathrm{K}_{\mathrm{a}}$ of $1.8 \times 10^{-5}$.


Draw the structure of aspirin. Which H is acidic?
Calculate the pH of 0.1 M aspirin solution.

## Bases undergo hydrolysis

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{HA}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}
$$

Bases can be strong or weak.
Which statement is true?
(i) Weak bases accept $\mathrm{H}^{+}$more easily than strong bases.
(ii) Weak bases have a lower $\mathrm{K}_{\mathrm{b}}$ than strong bases.
(iii) NaOH is a weaker base than $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
(iv) 0.1 M NaOH has the same pH as $0.1 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
(v) 0.1 M NaOH has a lower [OH-] than $0.1 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

Add Equations (1) and (2). What do you get?

HA <===> $\mathrm{H}^{+}+\mathrm{A}^{-}$
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{HA}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{a}} \quad$ acid dissociation (1)
$\mathrm{K}_{\mathrm{b}} \quad$ base hydrolysis
$\mathrm{K}_{3}=$

How is $\mathrm{K}_{3}$ related to $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ ?

Objective: Calculate the pH of a weak base
What is the pH of a $0.1 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ solution?
To calculate the pH of a weak base, e.g., $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ : write base hydrolysis reaction calculate $\mathrm{K}_{\mathrm{b}}$. Look up $\mathrm{K}_{\mathrm{a}}$ of acid. do an equilibrium calculation to calculate $\left[\mathrm{OH}^{-}\right]$ calculate $\mathrm{pOH}\left(=-\log \left[\mathrm{OH}^{-}\right]\right.$ calculate pH (using $\mathrm{pH}+\mathrm{pOH}=14$ )

Objective: Calculate the pH of a weak base What is the pH of a 0.1 M NaCH 3 COO solution?
write base hydrolysis reaction

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

calculate $\mathrm{K}_{\mathrm{b}}$. Look up $\mathrm{K}_{\mathrm{a}}$ of acid.

$$
\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-14} / 1.8 \times 10^{-5}=5.6 \times 10^{-10} .
$$

do an equilibrium calculation to calculate $\left[\mathrm{OH}^{-}\right]$ $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

| Initial | 0.1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| Reacts | $x$ | $x$ | $x$ |
| Equilibrium $0.1-x$ | $x$ | $x$ |  |
| $\mathrm{~K}_{\mathrm{b}}=5.6 \times 10^{-10}=\mathrm{x}^{2} /(0.1-\mathrm{x}) \approx \mathrm{x}^{2} /(0.1)$ | $\mathrm{x}=[\mathrm{OH}]=7.5 \times 10^{-6}$ |  |  |

calculate $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(7.5 \times 10^{-6}\right)=5.1$
calculate $\mathrm{pH}=14-\mathrm{pOH}=14-5.1=8.9$


## Sodium Benzoate $\left(\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}\right)$ is used as a food preservative.

What is the conjugate acid of benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$?

What is the pH of a 0.1 M Sodium Benzoate solution?
$\mathrm{K}_{\mathrm{a}}$ of benzoic acid $=6.5 \times 10^{-5}$.
$\mathrm{K}_{\mathrm{b}}$ of benzoate $=$
$\left[\mathrm{OH}^{-}\right]=3.9 \times 10^{-6} \mathrm{M}$

Baking Soda $\left(\mathrm{NaHCO}_{3}\right)$ is a $\qquad$ .

Calculate the pH of a 0.1 M baking soda solution.

http://www.armandhammer.com/solutions/
solution-53/antacid.aspx

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{pK}_{\mathrm{a}}=6.4 \\
& {[\mathrm{OH}]=5.0 \times 10^{-5} \mathrm{M}} \\
& \mathrm{pH}=9.7
\end{aligned}
$$

Sulfuric acid is the acid found in car batteries. What is/are the major sulfur containing substance(s) in this solution?



> Decomposition of $\mathrm{CaCO}_{3}$ : $$
\mathrm{CaCO}_{3}<==>\mathrm{CaO}_{2}
$$ At $1000^{\circ} \mathrm{C}, \mathrm{K}=9.75$ At $848^{\circ} \mathrm{C}, \mathrm{K}=1$

http://www.tums.com/products.html
$\mathrm{CaCO}_{3}$ is the active ingredient in Tums and Rolaids. Is this reaction exothermic or endothermic?

Is K greater than 1 or less than 1 at room temperature? (Note: we will calculate K at room temperature later.)

Is it safe to store Tums at room temperature?

