# Chem 1B Objective 1:

Identify organic functional groups, draw skeletal structures, and distinguish between the same compound, isomers, resonance structures, and different compounds.

<u>Key ideas</u>: Functional groups – a small group of 2 to 5 atoms within an organic compound that has specific properties. See General bonding rules for Organic compounds.

**Isomers** – same chemical formula, different bonding

Covalent bond - electrons shared between 2 atoms only --> localized electrons.

Electrons shared between 3 or more atoms – delocalized electrons. Need to show resonance structures to represent delocalized electrons. Experimental evidence – see IR.

# Most Compounds are Organic (16 million known)

Organic compounds contain: carbon, hydrogen, oxygen, nitrogen, phosphorous, and sulfur

# General Bonding Rules:

| Atom         | # of bonding pairs | # of lone pairs |  |  |
|--------------|--------------------|-----------------|--|--|
| С            | 4                  | 0               |  |  |
| Ν            | 3                  | 1               |  |  |
| 0            | 2                  | 2               |  |  |
| Н            | 1                  | 0               |  |  |
| F, CI, Br, I | 1                  | 3               |  |  |

**Biological Molecules are Organic Compounds** 

Carbohydrates Lipids Proteins Nucleic acids

## *Functional Groups* Are Small Groups of Atoms Within An Organic Compound



#### How Do You Determine How Atoms Are Bonded Together In A Compound? (In other words, how do you determine the structure of a compound?)

X-ray diffraction

Infrared (IR) spectroscopy – we will use in Lab 1

Nuclear magnetic resonance (NMR) spectroscopy

UV-Vis spectroscopy

Mass spectrometry

## **Bond Types are determined by IR Spectroscopy**

## stretch



http://teacher.pas.rochester.edu/PhysicsDemos/Mechanics/MA\_ElasticSolids/MA-01/MA-01.html

Which bond type requires the <u>most</u> energy to stretch? Hint: Hooke's law (physics) – spring strength, mass of ball

1. a. C-C b. C=C c. C≡C

2. a. C-H b. O-H



S p c t r a

R



S p e c t r a

R

Name and Suffix tells you # of C and Functional GroupNumber of Carbons: see Chang, 6th ed., Chapter 11, Table 11.1, p. 366.1 carbon =  $CH_4$  = methane4 carbons =  $C_4H_{10}$  = butane2 carbons =  $C_2H_6$  = ethane5 carbons =  $C_5H_{12}$  = pentane3 carbons =  $C_3H_8$  = propane6 carbons =  $C_6H_{14}$  = hexane

| Suffix    | Functional Group              | One Carbon Cpd                  | Two Carbon Cpd              |  |
|-----------|-------------------------------|---------------------------------|-----------------------------|--|
| -ane      | alkane                        | methane                         | ethane                      |  |
| -yl       | alkyl group<br>(alkane - 1 H) | methyl                          | ethyl                       |  |
| -ene      | alkene                        |                                 | ethene (ethylene)           |  |
| -yne      | alkyne                        |                                 | ethyne (acetylene)          |  |
| -ol       | alcohol                       | methyl alcohol<br>methanol      | ethyl alcohol<br>ethanol    |  |
| -al       | aldehyde                      |                                 | ethanal (acetaldehde)       |  |
| -one      | ketone                        |                                 | 3 C: propanone (acetone)    |  |
| -oic acid | acid                          | Methanoic acid<br>(formic acid) | Ethanoic acid (acetic acid) |  |

Name and Suffix tells you about functional group.

Ethane - 1 H ---> Ethyl  $C_2H_6$  - 1 H --->  $C_2H_5$ Check bonding of  $C_2H_5$ . One C needs one more bond  $\rightarrow$  bond to functional group  $C_2H_5OH = ethyl alcohol = ethanol$ 

Cholesterol = -ol tells you this compound has an alcohol group.

Acetone = -one tells you this compound has a ketone group.

Octane = -ane tells you this compound is an alkane.

Determine the number of carbon atoms and functional group based on the name. Draw the Lewis structure. (There may be **ISOMERS** - more than one way to draw a structure of a compound.)

1. Propanol is a 3 carbon alcohol Propane = 3 carbon alkane, -ol for alcohol functional group.

2. Hexanone

3. Butadiene

4. Pentanal

Big Organic Compounds have a *LOT* of H's



(you get tired of drawing all the H's in the structure)

**Skeletal structure** = shortcut to Lewis structure

Each line is a bond



A C is at the end of each bond

The H's bonded to C are not drawn

Big Organic Compounds have a *LOT* of H's



(you get tired of drawing all the H's in the structure)

**Skeletal structure** = shortcut to Lewis structure



The H's bonded to C are <u>not</u> drawn

Big Organic Compounds have a *LOT* of H's



# Draw Skeletal structure of this compound.

# What happens to alcohol after you drink it?

Draw Lewis structure of each compound. Identify the functional group in each compound:



Hint: draw in the H's

**Objective:** Identify isomers vs. different cpd

# <u>Isomers</u> Have the <u>Same</u> Chemical Formula but Different Connectivity (Structural Isomers)

Propanol has two isomers.



Do these 2 structures have the same chemical formula? Is the bonding the same? Check bond type (e.g., C-H bond, C-C bond, C-O bond) on each C. **Objective:** Identify isomers vs. different cpd

# <u>Isomers</u> Have the <u>Same</u> Chemical Formula but Different Connectivity (Structural Isomers)

Butane,  $C_4H_{10}$ , has two structural isomers. Which are the two isomers?

a. A and B b. A and C c. B and C



Hint: Same chemical formula? (draw in the H's) Is the bonding the same? **Objective:** Identify isomers vs. different cpd

# <u>Stereoisomers</u> Have the <u>Same</u> Chemical Formula, <u>Same</u> Connectivity but <u>Different</u> Orientation in Space Example: cis and trans isomers



Trans fatty acid – H's across from each other

Compare H's bonded to each C in C=C bond



Cis fatty acid – H's nearest each other.

C<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub> has three isomers. One isomer is a solvent for waxes and resins. Another isomer was a precursor for cling wrap (Saran wrap) but is mainly used in semiconductor fabrication.



- a. Which isomers are structural isomers?
  (i) A and B
  (ii) A and C
  (iii) B and C
- b. Which isomers are stereoisomers?
  (i) A and B
  (ii) A and C
  (iii) B and C

<u>Enantiomers</u> are mirror image stereoisomers that are not superimposable in each other.

- Left hand and right hand are enantiomers
- Ibuprofen has 2 enantiomers: one relieves pain, the other is inactive (http://en.wikipedia.org/wiki/Ibuprofen)

ОН



# Determine Properties from Bond Type Diamonds are Hard; Gold is Soft

- What bond type involves <u>localized</u> electrons (the sharing of electrons between 2 atoms)?
- a. Ionic bond
- b. covalent bond
- c. metallic bond
- d. H bond

How many electrons are shared between 2 atoms in a <u>single</u> covalent bond?

- a. 2
- b. 4
- c. 6
- d. 8

Name one property of a substance due to localized electrons.

## Determine Properties from Bond Type Diamonds are Hard; Gold is Soft

What bond type involves <u>delocalized</u> electrons (the sharing of electrons between 3 or more atoms)?

- a. Ionic bond
- b. covalent bond
- c. metallic bond
- d. H bond

Name one property of a substance due to delocalized electrons.

Determine structure from <u>experimental</u> data Benzene,  $C_6H_6$ , is a common organic solvent. <u>Experiments show benzene is a 6 carbon ring with 6 carbon-</u> <u>carbon bonds of the same length (140 pm) and 6 C-H bonds</u>. Draw the Lewis structure of benzene. Does the Lewis structure fit the experimental data? Give reasons.



Lewis structure: 3 C-C bonds and 3 C=C bonds. C-C <u>longer</u> than C=C . (Experiment: C-C 154 pm, C=C 134 pm)

Structure does <u>**NOT</u>** match the experimental data.</u>

Determine structure from experimental data Benzene,  $C_6H_6$ , is a common organic solvent. <u>Experiments show benzene is a 6 carbon ring with 6 carbon-</u> <u>carbon bonds of the same length (140 pm) and 6 C-H bonds</u>. Draw the Lewis structure of benzene. Does the Lewis structure fit the experimental data? Give reasons.



Electrons in the double bonds are shared by the 6 C atoms in ring = <u>delocalized</u> electrons. Draw 2 **Resonance Structures** 

to show delocalized electrons.

<u>Note</u>: you need experimental evidence of delocalized electrons.

# Resonance Structures:

• A Lewis structure shows localized electrons (it does <u>not</u> show *delocalized* electrons)

- Each resonance structure has the <u>same</u> bonding (no isomers)
- Double bonds or lone pairs or (+) or (-) charge change positions in resonance structures



Over how many atoms are electrons shared?

(from a previous exam) Salicylic acid and 1-propene-3-ol have carbon-carbon double bonds. You measure the IR spectrum of each compound. The C=C peak in salicylic acid is at a lower energy than the C=C peak in 1-propene-3-ol. Give reasons.







1-propene-3-ol

Determine structure from experimental data

- (from Spring 2009 Exam 1) You are trying to determine the identity of an organic ion. So far, your analysis shows that the compound contains:
- (i) C and H and O with chemical formula  $C_2H_3O_2$ ,
- (ii) Three HCH bond angles and three CCH bond angles of 109.5°. (Note: methane, CH<sub>4</sub>, has four HCH bond angles.)
- (iii) Two carbon-oxygen bonds of length 1.26 Angstroms.
   (Note: A carbon-oxygen single bond has a bond length of 1.34 Angstroms. A carbon-oxygen double bond has a bond length of 1.20 Angstroms.)

# Bond Strength Determines Reactivity. What makes a bond strong or weak? What does d tell you?

| Bond | d,<br>pm | ∆H,<br>kcal/ | Bond | d,<br>pm | ∆H,<br>kcal/ | Bond | d,<br>pm | ∆H,<br>kcal/ |
|------|----------|--------------|------|----------|--------------|------|----------|--------------|
|      |          | mole         |      |          | mole         |      |          | mole         |
| C-H  | 109      | 99           | C-C  | 154      | 83           | C-O  | 143      | 94           |
| O-H  | 96       | 104          | C=C  | 134      | 146          | C=O  | 120      | 177          |
| N-H  | 101      | 101          | C≡C  | 120      | 201          | C≡O  | 113      | 256          |
| H-F  | 92       | 136          | C-F  | 135      | 116          | C-N  | 147      | 73           |
| H-CI | 127      | 103          | C-CI | 177      | 81           | C=N  | 129      | 147          |
| H-Br | 141      | 87.5         | C-Br | 194      | 68           | C≡N  | 116      | 212          |
| H-I  | 161      | 71           | C-I  | 214      | 51           | N-O  | 140      | 48           |
|      |          |              |      |          |              | N=O  | 121      | 145          |

Note: Average bond energies. Some bonds show considerable variability.

#### Determine Properties from Bond Type (from Chem 1A)

## **Do Explosives Have Strong Bonds or Weak Bonds?**



http://blogs.sfweekly.com/ exhibitionist/2012/04/ blowing\_up\_ij.php



http://www.turbosquid.com/FullPreview/Index.cfm/ID/192192

#### Determine Properties from Bond Type (from Chem 1A) Do Explosives Have Strong Bonds or Weak Bonds?

Nitrogen triiodide decomposes *explosively* with the touch of a \_\_\_\_\_.



$$NI_3 \rightarrow N_2 + I_2$$

# Which bonds are <u>strong</u>?

## Which bonds are <u>weak</u>?

http://www.openscience.org/blog/?p=95

<u>https://en.wikipedia.org/wiki/Nitrogen\_triiodide</u> 2 NI<sub>3</sub> (s)  $\rightarrow$  N<sub>2</sub> (g) + 3 I<sub>2</sub> (g) (-290 kJ/mol)

<u>http://pubs.rsc.org/en/Content/ArticleLanding/1989/C3/C39890001461#!divAbstract</u>  $\Delta H_{formation}$  of NI<sub>3</sub> • NH<sub>3</sub> (c) = +146 ± 6 kJ/mol  $\Delta H_{formation}$  of NI<sub>3</sub> (g) = +287 ± 23 kJ/mol nitrogen-iodine bond energy, E(N-I) = 169 ± 8 kJ/mol

http://chemwiki.ucdavis.edu/Core/Theoretical\_Chemistry/Chemical\_Bonding/ General\_Principles\_of\_Chemical\_Bonding/Bond\_Energies N E N bond energy = 941 kJ/mol I-I bond energy = 149 kJ/mol

#### Determine Properties from Bond Type (from Chem 1A) Do Explosives Have Strong Bonds or Weak Bonds?

Which list shows the relative bond <u>strengths</u> (strongest to weakest)?

- a. single bond > double bond > triple bond
- b. triple bond > double bond > single bond
- c. double bond > triple bond > single bond

Which bond is easiest to break?

Which bond releases the most energy when formed?

## Determine Properties from Bond Type (from Chem 1A) Do Explosives Have Strong Bonds or Weak Bonds?

Which list shows the relative bond <u>lengths</u> (longest to shortest)?

- a. single bond > double bond > triple bond
- b. triple bond > double bond > single bond
- c. double bond > triple bond > single bond